The Enzyme Database

Displaying entries 1-50 of 69.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.261     
Accepted name: sn-glycerol-1-phosphate dehydrogenase
Reaction: sn-glycerol 1-phosphate + NAD(P)+ = glycerone phosphate + NAD(P)H + H+
For diagram of archaetidylserine biosynthesis, click here and for diagram of archaetidylserine biosynthesis, click here
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): glycerol-1-phosphate dehydrogenase [NAD(P)+]; sn-glycerol-1-phosphate:NAD+ oxidoreductase; G-1-P dehydrogenase; Gro1PDH; AraM
Systematic name: sn-glycerol-1-phosphate:NAD(P)+ 2-oxidoreductase
Comments: This enzyme is found primarily as a Zn2+-dependent form in archaea but a Ni2+-dependent form has been found in Gram-positive bacteria [6]. The Zn2+-dependent metalloenzyme is responsible for the formation of archaea-specific sn-glycerol-1-phosphate, the first step in the biosynthesis of polar lipids in archaea. It is the enantiomer of sn-glycerol 3-phosphate, the form of glycerophosphate found in bacteria and eukaryotes. The other enzymes involved in the biosynthesis of polar lipids in archaea are EC 2.5.1.41 (phosphoglycerol geranylgeranyltransferase) and EC 2.5.1.42 (geranylgeranylglycerol-phosphate geranylgeranyltransferase), which together alkylate the hydroxy groups of glycerol 1-phosphate to give unsaturated archaetidic acid, which is acted upon by EC 2.7.7.67 (CDP-archaeol synthase) to form CDP-unsaturated archaeol. The final step in the pathway involves the addition of L-serine, with concomitant removal of CMP, leading to the production of unsaturated archaetidylserine [4]. Activity of the enzyme is stimulated by K+ [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 204594-18-3
References:
1.  Nishihara, M. and Koga, Y. sn-Glycerol-1-phosphate dehydrogenase in Methanobacterium thermoautotrophicum: key enzyme in biosynthesis of the enantiomeric glycerophosphate backbone of ether phospholipids of archaebacteria. J. Biochem. 117 (1995) 933–935. [PMID: 8586635]
2.  Nishihara, M. and Koga, Y. Purification and properties of sn-glycerol-1-phosphate dehydrogenase from Methanobacterium thermoautotrophicum: characterization of the biosynthetic enzyme for the enantiomeric glycerophosphate backbone of ether polar lipids of Archaea. J. Biochem. 122 (1997) 572–576. [PMID: 9348086]
3.  Koga, Y., Kyuragi, T., Nishihara, M. and Sone, N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 46 (1998) 54–63. [PMID: 9419225]
4.  Morii, H., Nishihara, M. and Koga, Y. CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus. J. Biol. Chem. 275 (2000) 36568–36574. [DOI] [PMID: 10960477]
5.  Han, J.S. and Ishikawa, K. Active site of Zn2+-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1. Archaea 1 (2005) 311–317. [PMID: 15876564]
6.  Guldan, H., Sterner, R. and Babinger, P. Identification and characterization of a bacterial glycerol-1-phosphate dehydrogenase: Ni(2+)-dependent AraM from Bacillus subtilis. Biochemistry 47 (2008) 7376–7384. [DOI] [PMID: 18558723]
[EC 1.1.1.261 created 2000, modified 2009]
 
 
EC 1.1.1.341     
Accepted name: CDP-abequose synthase
Reaction: CDP-α-D-abequose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Glossary: CDP-α-D-abequose = CDP-3,6-dideoxy-α-D-xylo-hexose
Other name(s): rfbJ (gene name)
Systematic name: CDP-α-D-abequose:NADP+ 4-oxidoreductase
Comments: Isolated from Yersinia pseudotuberculosis [1,3] and Salmonella enterica [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kessler, A.C., Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular cloning and genetic characterization of the rfb region from Yersinia pseudotuberculosis serogroup IIA, which determines the formation of the 3,6-dideoxyhexose abequose. J. Gen. Microbiol. 137 (1991) 2689–2695. [DOI] [PMID: 1724263]
2.  Wyk, P. and Reeves, P. Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J. Bacteriol. 171 (1989) 5687–5693. [DOI] [PMID: 2793832]
3.  Thorson, J.S., Lo, S.F., Ploux, O., He, X. and Liu, H.W. Studies of the biosynthesis of 3,6-dideoxyhexoses: molecular cloning and characterization of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J. Bacteriol. 176 (1994) 5483–5493. [DOI] [PMID: 8071227]
[EC 1.1.1.341 created 2012]
 
 
EC 1.1.1.342     
Accepted name: CDP-paratose synthase
Reaction: CDP-α-D-paratose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Glossary: CDP-α-D-paratose = CDP-3,6-dideoxy-α-D-glucose = CDP-3,6-dideoxy-α-D-ribo-hexose
Other name(s): rfbS (gene name)
Systematic name: CDP-α-D-paratose:NADP+ 4-oxidoreductase
Comments: The enzyme is involved in synthesis of paratose and tyvelose, unusual 3,6-dideoxyhexose sugars that form part of the O-antigen in the lipopolysaccharides of several enteric bacteria. Isolated from Salmonella enterica subsp. enterica serovar Typhi (Salmonella typhi).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Verma, N. and Reeves, P. Identification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and group D salmonellae. J. Bacteriol. 171 (1989) 5694–5701. [DOI] [PMID: 2793833]
2.  Hallis, T.M., Lei, Y., Que, N.L. and Liu, H. Mechanistic studies of the biosynthesis of paratose: purification and characterization of CDP-paratose synthase. Biochemistry 37 (1998) 4935–4945. [DOI] [PMID: 9538012]
[EC 1.1.1.342 created 2012]
 
 
EC 1.1.1.405     
Accepted name: ribitol-5-phosphate 2-dehydrogenase (NADP+)
Reaction: D-ribitol 5-phosphate + NADP+ = D-ribulose 5-phosphate + NADPH + H+
Other name(s): acs1 (gene name); bcs1 (gene name); tarJ (gene name); ribulose-5-phosphate reductase; ribulose-5-P reductase; D-ribulose 5-phosphate reductase
Systematic name: D-ribitol-5-phosphate:NADP+ 2-oxidoreductase
Comments: Requires Zn2+. The enzyme, characterized in bacteria, is specific for NADP. It is part of the synthesis pathway of CDP-ribitol. In Haemophilus influenzae it is part of a multifunctional enzyme also catalysing EC 2.7.7.40, D-ribitol-5-phosphate cytidylyltransferase. cf. EC 1.1.1.137, ribitol-5-phosphate 2-dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zolli, M., Kobric, D.J. and Brown, E.D. Reduction precedes cytidylyl transfer without substrate channeling in distinct active sites of the bifunctional CDP-ribitol synthase from Haemophilus influenzae. Biochemistry 40 (2001) 5041–5048. [DOI] [PMID: 11305920]
2.  Pereira, M.P. and Brown, E.D. Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry 43 (2004) 11802–11812. [DOI] [PMID: 15362865]
3.  Pereira, M.P., D'Elia, M.A., Troczynska, J. and Brown, E.D. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J. Bacteriol. 190 (2008) 5642–5649. [DOI] [PMID: 18556787]
4.  Baur, S., Marles-Wright, J., Buckenmaier, S., Lewis, R.J. and Vollmer, W. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae. J. Bacteriol. 191 (2009) 1200–1210. [DOI] [PMID: 19074383]
[EC 1.1.1.405 created 2017]
 
 
EC 1.17.1.1     
Accepted name: CDP-4-dehydro-6-deoxyglucose reductase
Reaction: CDP-4-dehydro-3,6-dideoxy-D-glucose + NAD(P)+ + H2O = CDP-4-dehydro-6-deoxy-D-glucose + NAD(P)H + H+
For diagram of the biosynthesis of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyvelose, click here
Other name(s): CDP-4-keto-6-deoxyglucose reductase; cytidine diphospho-4-keto-6-deoxy-D-glucose reductase; cytidine diphosphate 4-keto-6-deoxy-D-glucose-3-dehydrogenase; CDP-4-keto-deoxy-glucose reductase; CDP-4-keto-6-deoxy-D-glucose-3-dehydrogenase system; NAD(P)H:CDP-4-keto-6-deoxy-D-glucose oxidoreductase
Systematic name: CDP-4-dehydro-3,6-dideoxy-D-glucose:NAD(P)+ 3-oxidoreductase
Comments: The enzyme consists of two proteins. One forms an enzyme-bound adduct of the CDP-4-dehydro-6-deoxyglucose with pyridoxamine phosphate, in which the 3-hydroxy group has been removed. The second catalyses the reduction of this adduct by NAD(P)H and release of the CDP-4-dehydro-3,6-dideoxy-D-glucose and pyridoxamine phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-87-4
References:
1.  Pape, H. and Strominger, J.L. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. V. Partial purification of the two protein components required for introduction of the 3-deoxy group. J. Biol. Chem. 244 (1969) 3598–3604. [PMID: 4389672]
2.  Rubenstein, P.A. and Strominger, J.L. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. VII. Mechanistic roles of enzyme E1 and pyridoxamine 5′-phosphate in the formation of cytidine diphosphate-4-keto-3,6-dideoxy-D-glucose from cytidine diphosphate-4-keto-6-deoxy-D-glucose. J. Biol. Chem. 249 (1974) 3776–3781. [PMID: 4152100]
3.  Liu, H.-W. and Thorson, J.S. Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu. Rev. Microbiol. 48 (1994) 223–256. [DOI] [PMID: 7826006]
[EC 1.17.1.1 created 1972, modified 2005]
 
 
EC 1.17.4.1     
Accepted name: ribonucleoside-diphosphate reductase
Reaction: 2′-deoxyribonucleoside 5′-diphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-diphosphate + thioredoxin
Other name(s): ribonucleotide reductase (ambiguous); CDP reductase; ribonucleoside diphosphate reductase; UDP reductase; ADP reductase; nucleoside diphosphate reductase; ribonucleoside 5′-diphosphate reductase; ribonucleotide diphosphate reductase; 2′-deoxyribonucleoside-diphosphate:oxidized-thioredoxin 2′-oxidoreductase; RR; nrdB (gene name); nrdF (gene name); nrdJ (gene name)
Systematic name: 2′-deoxyribonucleoside-5′-diphosphate:thioredoxin-disulfide 2′-oxidoreductase
Comments: This enzyme is responsible for the de novo conversion of ribonucleoside diphosphates into deoxyribonucleoside diphosphates, which are essential for DNA synthesis and repair. There are three types of this enzyme differing in their cofactors. Class Ia enzymes contain a diiron(III)-tyrosyl radical, class Ib enzymes contain a dimanganese-tyrosyl radical, and class II enzymes contain adenosylcobalamin. In all cases the cofactors are involved in generation of a transient thiyl (sulfanyl) radical on a cysteine residue, which attacks the substrate, forming a ribonucleotide 3′-radical, followed by water loss to form a ketyl (α-oxoalkyl) radical. The ketyl radical is reduced to 3′-keto-deoxynucleotide concomitant with formation of a disulfide anion radical between two cysteine residues. A proton-coupled electron-transfer from the disulfide radical to the substrate generates a 3′-deoxynucleotide radical, and the final product is formed when the hydrogen atom that was initially removed from the 3′-position of the nucleotide by the thiyl radical is returned to the same position. The disulfide bridge is reduced by the action of thioredoxin. cf. EC 1.1.98.6, ribonucleoside-triphosphate reductase (formate) and EC 1.17.4.2, ribonucleoside-triphosphate reductase (thioredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9047-64-7
References:
1.  Larsson, A. and Reichard, P. Enzymatic synthesis of deoxyribonucleotides. IX. Allosteric effects in the reduction of pyrimidine ribonucleotides by the ribonucleoside diphosphate reductase system of Escherichia coli. J. Biol. Chem. 241 (1966) 2533–2539. [PMID: 5330119]
2.  Larsson, A. and Reichard, P. Enzymatic synthesis of deoxyribonucleotides. X. Reduction of purine ribonucleotides; allosteric behavior and substrate specificity of the enzyme system from Escherichia coli B. J. Biol. Chem. 241 (1966) 2540–2549. [PMID: 5330120]
3.  Moore, E.C. and Hurlbert, R.B. Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J. Biol. Chem. 241 (1966) 4802–4809. [PMID: 5926184]
4.  Larsson, A. Ribonucleotide reductase from regenerating rat liver. II. Substrate phosphorylation level and effect of deoxyadenosine triphosphate. Biochim. Biophys. Acta 324 (1973) 447–451. [DOI] [PMID: 4543472]
5.  Lammers, M. and Follmann, H. The ribonucleotide reductases - a unique group of metalloenzymes essential for cell-proliferation. Struct. Bonding 54 (1983) 27–91.
6.  Stubbe, J., Ator, M. and Krenitsky, T. Mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3′-C--H bond cleavage. J. Biol. Chem. 258 (1983) 1625–1631. [PMID: 6337142]
7.  Lenz, R. and Giese, B. Studies on the Mechanism of Ribonucleotide Reductases. J. Am. Chem. Soc. 119 (1997) 2784–2794.
8.  Lawrence, C.C., Bennati, M., Obias, H.V., Bar, G., Griffin, R.G. and Stubbe, J. High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5′-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase. Proc. Natl. Acad. Sci. USA 96 (1999) 8979–8984. [DOI] [PMID: 10430881]
9.  Qiu, W., Zhou, B., Darwish, D., Shao, J. and Yen, Y. Characterization of enzymatic properties of human ribonucleotide reductase holoenzyme reconstituted in vitro from hRRM1, hRRM2, and p53R2 subunits. Biochem. Biophys. Res. Commun. 340 (2006) 428–434. [DOI] [PMID: 16376858]
[EC 1.17.4.1 created 1972, modified 2017]
 
 
EC 2.3.1.70      
Deleted entry: CDP-acylglycerol O-arachidonoyltransferase. This enzyme was deleted following a retraction of the evidence upon which the entry had been drafted (Thompson, W. and Zuk, R.T. Acylation of CDP-monoacylglycerol cannot be confirmed. J. Biol. Chem. 258 (1983) 9623. [PMID: 6885763]).
[EC 2.3.1.70 created 1984, deleted 2009]
 
 
EC 2.4.1.55      
Transferred entry: teichoic-acid synthase. Now EC 2.7.8.14, CDP-ribitol ribitolphosphotransferase
[EC 2.4.1.55 created 1972, deleted 1982]
 
 
EC 2.4.1.60     
Accepted name: CDP-abequose:α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und α-1,3-abequosyltransferase
Reaction: CDP-α-D-abequose + α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = CDP + α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: D-abequose = 3,6-deoxy-D-xylo-hexose = 3,6-deoxy-D-galactose = 3-deoxy-D-fucose
α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-abequopyranosyl-(1→3)-α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaV (gene name); rfbV (gene name); trihexose diphospholipid abequosyltransferase; abequosyltransferase (ambiguous); CDP-α-D-abequose:Man(α1→4)Rha(α1→3)Gal(β-1)-diphospholipid D-abequosyltransferase
Systematic name: CDP-α-D-abequose:α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3III-α-abequosyltransferase (configuration retaining)
Comments: The enzyme from Salmonella participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B and D1-D3 groups. The enzyme is able to transfer abequose, paratose, or tyvelose, depending on the availability of the specific dideoxyhexose in a particular strain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-67-1
References:
1.  Osborn, M.J. and Weiner, I.M. Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J. Biol. Chem. 243 (1968) 2631–2639. [PMID: 4297268]
2.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
[EC 2.4.1.60 created 1972, modified 2012, modified 2021]
 
 
EC 2.4.1.80     
Accepted name: ceramide glucosyltransferase
Reaction: UDP-α-D-glucose + an N-acylsphingosine = UDP + a β-D-glucosyl-N-acylsphingosine
For diagram of glycolipid biosynthesis, click here
Other name(s): UDP-glucose:ceramide glucosyltransferase; ceramide:UDP-Glc glucosyltransferase; uridine diphosphoglucose-ceramide glucosyltransferase; ceramide:UDP-glucose glucosyltransferase; glucosylceramide synthase; UDP-glucose:N-acylsphingosine D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-acylsphingosine β-D-glucosyltransferase (configuration-inverting)
Comments: Sphingosine and dihydrosphingosine can also act as acceptors; CDP-glucose can act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37237-44-8
References:
1.  Basu, S., Kaufman, B. and Roseman, S. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J. Biol. Chem. 248 (1973) 1388–1394. [PMID: 4631392]
[EC 2.4.1.80 created 1976]
 
 
EC 2.4.1.186     
Accepted name: glycogenin glucosyltransferase
Reaction: UDP-α-D-glucose + glycogenin = UDP + α-D-glucosylglycogenin
Other name(s): glycogenin; priming glucosyltransferase; UDP-glucose:glycogenin glucosyltransferase
Systematic name: UDP-α-D-glucose:glycogenin α-D-glucosyltransferase
Comments: The first reaction of this enzyme is to catalyse its own glucosylation, normally at Tyr-194 of the protein if this group is free. When Tyr-194 is replaced by Thr or Phe, the enzyme’s Mn2+-dependent self-glucosylation activity is lost but its intermolecular transglucosylation ability remains [7]. It continues to glucosylate an existing glucosyl group until a length of about 5–13 residues has been formed. Further lengthening of the glycogen chain is then carried out by EC 2.4.1.11, glycogen (starch) synthase. The enzyme is not highly specific for the donor, using UDP-xylose in addition to UDP-glucose (although not glucosylating or xylosylating a xylosyl group so added). It can also use CDP-glucose and TDP-glucose, but not ADP-glucose or GDP-glucose. Similarly it is not highly specific for the acceptor, using water (i.e. hydrolysing UDP-glucose) among others. Various forms of the enzyme exist, and different forms predominate in different organs. Thus primate liver contains glycogenin-2, of molecular mass 66 kDa, whereas the more widespread form is glycogenin-1, with a molecular mass of 38 kDa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 117590-73-5
References:
1.  Krisman, C.R. and Barengo, R. A precursor of glycogen biosynthesis: α-1,4-glucan-protein. Eur. J. Biochem. 52 (1975) 117–123. [DOI] [PMID: 809265]
2.  Pitcher, J., Smythe, C., Campbell, D.G. and Cohen, P. Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin. Eur. J. Biochem. 169 (1987) 497–502. [DOI] [PMID: 3121316]
3.  Pitcher, J., Smythe, C. and Cohen, P. Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur. J. Biochem. 176 (1988) 391–395. [DOI] [PMID: 2970965]
4.  Kennedy, L.D., Kirkman, B.R., Lomako, J., Rodriguez, I.R. and Whelan, W.J. The biogenesis of rabbit-muscle glycogen. In: Berman, M.C. and Opie, L.A. (Ed.), Membranes and Muscle, ICSU Press/IRL Press, Oxford, 1985, pp. 65–84.
5.  Rodriguez, I.R. and Whelan, W.J. A novel glycosyl-amino acid linkage: rabbit-muscle glycogen is covalently linked to a protein via tyrosine. Biochem. Biophys. Res. Commun. 132 (1985) 829–836. [DOI] [PMID: 4062948]
6.  Lomako, J., Lomako, W.M. and Whelan, W.J. A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J. 2 (1988) 3097–3103. [PMID: 2973423]
7.  Alonso, M.D., Lomako, J., Lomako, W.M. and Whelan, W.J. Catalytic activities of glycogenin additional to autocatalytic self-glucosylation. J. Biol. Chem. 270 (1995) 15315–15319. [DOI] [PMID: 7797519]
8.  Alonso, M.D., Lomako, J., Lomako, W.M. and Whelan, W.J. A new look at the biogenesis of glycogen. FASEB J. 9 (1995) 1126–1137. [PMID: 7672505]
9.  Mu, J. and Roach, P.J. Characterization of human glycogenin-2, a self-glucosylating initiator of liver glycogen metabolism. J. Biol. Chem. 273 (1998) 34850–34856. [DOI] [PMID: 9857012]
10.  Gibbons, B.J., Roach, P.J. and Hurley, T.D. Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J. Mol. Biol. 319 (2002) 463. [DOI] [PMID: 12051921]
[EC 2.4.1.186 created 1992 (EC 2.4.1.112 created 1984, incorporated 2007)]
 
 
EC 2.4.1.382     
Accepted name: CDP-abequose:α-L-Rha2OAc-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und α-1,3-abequosyltransferase
Reaction: CDP-α-D-abequose + 2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = CDP + α-D-Abe-(1→3)-2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha2OAc-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = 2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Abe-(1→3)-2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-abequosyl-(1→3)-2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaR (gene name); rfbR (gene name)
Systematic name: CDP-α-D-abequose:2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3IV-α-abequosyltransferase (configuration retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
2.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.382 created 2021]
 
 
EC 2.4.1.384     
Accepted name: NDP-glycosyltransferase
Reaction: an NDP-glycose + an acceptor = a glycosylated acceptor + NDP
Other name(s): yjiC (gene name)
Systematic name: NDP-glycose:acceptor glycosyltransferase
Comments: The enzyme, characterized from the bacterium Bacillus licheniformis DSM-13, is an extremely promiscuous glycosyltransferase. It can accept ADP-, GDP-, CDP-, TDP-, or UDP-activated glycose molecules as donors, and can glycosylate a large number of substrates, catalysing O-, N-, or S-glycosylation. While D-glucose is the primarily reported sugar being transferred, the enzyme has been shown to transfer D-galactose, 2-deoxy-D-glucose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, L-fucose, L-rhamnose, D-glucuronate, and D-viosamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pandey, R.P., Parajuli, P., Koirala, N., Park, J.W. and Sohng, J.K. Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl. Environ. Microbiol. 79 (2013) 6833–6838. [DOI] [PMID: 23974133]
2.  Pandey, R.P., Gurung, R.B., Parajuli, P., Koirala, N., Tuoi le, T. and Sohng, J.K. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393 (2014) 26–31. [DOI] [PMID: 24893262]
3.  Pandey, R.P., Parajuli, P., Shin, J.Y., Lee, J., Lee, S., Hong, Y.S., Park, Y.I., Kim, J.S. and Sohng, J.K. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl. Environ. Microbiol. 80 (2014) 7235–7243. [DOI] [PMID: 25239890]
4.  Parajuli, P., Pandey, R.P., Koirala, N., Yoon, Y.J., Kim, B.G. and Sohng, J.K. Enzymatic synthesis of epothilone A glycosides. AMB Express 4:31 (2014). [DOI] [PMID: 24949266]
5.  Pandey, R.P., Parajuli, P., Gurung, R.B. and Sohng, J.K. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions. Enzyme Microb. Technol. 91 (2016) 26–33. [DOI] [PMID: 27444326]
6.  Bashyal, P., Thapa, S.B., Kim, T.S., Pandey, R.P. and Sohng, J.K. Exploring the nucleophilic N- and S-glycosylation capacity of Bacillus licheniformis YjiC enzyme. J. Microbiol. Biotechnol. 30 (2020) 1092–1096. [DOI] [PMID: 32238768]
[EC 2.4.1.384 created 2021]
 
 
EC 2.4.3.1     
Accepted name: β-galactoside α-(2,6)-sialyltransferase
Reaction: CMP-N-acetyl-β-neuraminate + β-D-galactosyl-R = CMP + N-acetyl-α-neuraminyl-(2→6)-β-D-galactosyl-R
Other name(s): ST6Gal-I; CMP-N-acetylneuraminate:β-D-galactosyl-1,4-N-acetyl-β-D-glucosamine α-2,6-N-acetylneuraminyltransferase; lactosylceramide α-2,6-N-sialyltransferase; CMP-N-acetylneuraminate:β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosamine α-(2→6)-N-acetylneuraminyltransferase; β-galactoside α-2,6-sialyltransferase
Systematic name: CMP-N-acetyl-β-neuraminate:β-D-galactoside α-(2→6)-N-acetylneuraminyltransferase (configuration-inverting)
Comments: The enzyme acts on the terminal non-reducing β-D-galactosyl residue of the oligosaccharide moiety of glycoproteins and glycolipids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-81-4
References:
1.  Spiro, M.H. and Spiro, R.G. Glycoprotein biosynthesis: studies on thyroglobulin. Thyroid sialyltransferase. J. Biol. Chem. 243 (1968) 6520–6528. [PMID: 5726897]
2.  Hickman, J., Ashwell, G., Morell, A.G., van der Hamer, C.J.A. and Scheinberg, I.H. Physical and chemical studies on ceruloplasmin. 8. Preparation of N-acetylneuraminic acid-1-14C-labeled ceruloplasmin. J. Biol. Chem. 245 (1970) 759–766. [PMID: 4313609]
3.  Bartholomew, B.A., Jourdian, G.W. and Roseman, S. The sialic acids. XV. Transfer of sialic acid to glycoproteins by a sialyltransferase from colostrum. J. Biol. Chem. 248 (1973) 5751–5762. [PMID: 4723915]
4.  Paulson, J.C., Beranek, W.E. and Hill, R.L. Purification of a sialyltransferase from bovine colostrum by affinity chromatography on CDP-agarose. J. Biol. Chem. 252 (1977) 2356–2362. [PMID: 849932]
5.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
6.  Albarracin, I., Lassaga, F.E. and Caputto, R. Purification and characterization of an endogenous inhibitor of the sialyltransferase CMP-N-acetylneuraminate: lactosylceramide α2,6-N-acetylneuraminyltransferase (EC 2.4.99.-). Biochem. J. 254 (1988) 559–565. [PMID: 2460092]
[EC 2.4.3.1 created 1972 as EC 2.4.99.1, modified 1976, modified 1986, modified 2017 (EC 2.4.99.11 created 1992, incorporated 2016), modified 2017, transferred 2021 to EC 2.4.3.1]
 
 
EC 2.4.99.1      
Transferred entry: β-galactoside α-(2,6)-sialyltransferase. Now EC 2.4.3.1, β-galactoside α-(2,6)-sialyltransferase
[EC 2.4.99.1 created 1972, modified 1976, modified 1986, modified 2017 (EC 2.4.99.11 created 1992, incorporated 2017), deleted 2022]
 
 
EC 2.5.1.41     
Accepted name: phosphoglycerol geranylgeranyltransferase
Reaction: geranylgeranyl diphosphate + sn-glycerol 1-phosphate = diphosphate + 3-(O-geranylgeranyl)-sn-glycerol 1-phosphate
For diagram of archaetidylserine biosynthesis, click here
Glossary: sn-glycerol 1-phosphate = sn-glyceryl phosphate = (S)-2,3-dihydroxypropyl dihydrogen phosphate
Other name(s): glycerol phosphate geranylgeranyltransferase; geranylgeranyl-transferase (ambiguous); prenyltransferase (ambiguous); (S)-3-O-geranylgeranylglyceryl phosphate synthase; (S)-geranylgeranylglyceryl phosphate synthase; GGGP synthase; (S)-GGGP synthase; GGGPS; geranylgeranyl diphosphate:sn-glyceryl phosphate geranylgeranyltransferase; geranylgeranyl diphosphate:sn-glycerol-1-phosphate geranylgeranyltransferase
Systematic name: geranylgeranyl-diphosphate:sn-glycerol-1-phosphate geranylgeranyltransferase
Comments: This cytosolic enzyme catalyses the first pathway-specific step in the biosynthesis of the core membrane diether lipids in archaebacteria [2]. Requires Mg2+ for maximal activity [2]. It catalyses the alkylation of the primary hydroxy group in sn-glycerol 1-phosphate by geranylgeranyl diphosphate (GGPP) in a prenyltransfer reaction where a hydroxy group is the nucleophile in the acceptor substrate [2]. The other enzymes involved in the biosynthesis of polar lipids in Archaea are EC 1.1.1.261 (sn-glycerol-1-phosphate dehydrogenase), EC 2.5.1.42 (geranylgeranylglycerol-phosphate geranylgeranyltransferase) and EC 2.7.7.67 (CDP-archaeol synthase), which lead to the formation of CDP-unsaturated archaeol. The final step in the pathway involves the addition of L-serine, with concomitant removal of CMP, leading to the production of unsaturated archaetidylserine [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 124650-69-7
References:
1.  Zhang, D.-L., Daniels, L. and Poulter, C.D. Biosynthesis of archaebacterial membranes. Formation of isoprene ethers by a prenyl transfer reaction. J. Am. Chem. Soc. 112 (1990) 1264–1265.
2.  Chen, A., Zhang, D. and Poulter, C.D. (S)-Geranylgeranylglyceryl phosphate synthase. Purification and characterization of the first pathway-specific enzyme in archaebacterial membrane lipid biosynthesis. J. Biol. Chem. 268 (1993) 21701–21705. [PMID: 8408023]
3.  Nemoto, N., Oshima, T. and Yamagishi, A. Purification and characterization of geranylgeranylglyceryl phosphate synthase from a thermoacidophilic archaeon, Thermoplasma acidophilum. J. Biochem. 133 (2003) 651–657. [PMID: 12801917]
4.  Payandeh, J., Fujihashi, M., Gillon, W. and Pai, E.F. The crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase reveals an ancient fold for an ancient enzyme. J. Biol. Chem. 281 (2006) 6070–6078. [DOI] [PMID: 16377641]
5.  Morii, H., Nishihara, M. and Koga, Y. CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus. J. Biol. Chem. 275 (2000) 36568–36574. [DOI] [PMID: 10960477]
[EC 2.5.1.41 created 1992, modified 2009]
 
 
EC 2.5.1.42     
Accepted name: geranylgeranylglycerol-phosphate geranylgeranyltransferase
Reaction: geranylgeranyl diphosphate + 3-(O-geranylgeranyl)-sn-glycerol 1-phosphate = diphosphate + 2,3-bis-(O-geranylgeranyl)-sn-glycerol 1-phosphate
For diagram of archaetidylserine biosynthesis, click here
Other name(s): geranylgeranyloxyglycerol phosphate geranylgeranyltransferase; geranylgeranyltransferase II; (S)-2,3-di-O-geranylgeranylglyceryl phosphate synthase; DGGGP synthase; DGGGPS; geranylgeranyl diphosphate:sn-3-O-(geranylgeranyl)glycerol 1-phosphate geranylgeranyltransferase
Systematic name: geranylgeranyl-diphosphate:3-(O-geranylgeranyl)-sn-glycerol 1-phosphate geranylgeranyltransferase
Comments: This enzyme is an integral-membrane protein that carries out the second prenyltransfer reaction involved in the formation of polar membrane lipids in Archaea. Requires a divalent metal cation, such as Mg2+ or Mn2+, for activity [2]. 4-Hydroxybenzoate, 1,4-dihydroxy 2-naphthoate, homogentisate and α-glycerophosphate cannot act as prenyl-acceptor substrates [2]. The other enzymes involved in the biosynthesis of polar lipids in Archaea are EC 1.1.1.261 (sn-glycerol-1-phosphate dehydrogenase), EC 2.5.1.41 (phosphoglycerol geranylgeranyltransferase), which, together with this enzyme, alkylates the hydroxy groups of glycerol 1-phosphate to yield unsaturated archaetidic acid, which is acted upon by EC 2.7.7.67 [CDP-2,3-bis-(O-geranylgeranyl)-sn-glycerol synthase] to form CDP-unsaturated archaeol. The final step in the pathway involves the addition of L-serine, with concomitant removal of CMP, leading to the production of unsaturated archaetidylserine [3]. Belongs in the UbiA prenyltransferase family [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 124650-68-6
References:
1.  Zhang, D.-L., Daniels, L. and Poulter, C.D. Biosynthesis of archaebacterial membranes. Formation of isoprene ethers by a prenyl transfer reaction. J. Am. Chem. Soc. 112 (1990) 1264–1265.
2.  Hemmi, H., Shibuya, K., Takahashi, Y., Nakayama, T. and Nishino, T. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermoacidophilic archaeon Sulfolobus solfataricus. Molecular cloning and characterization of a membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal ether-linked membrane lipids. J. Biol. Chem. 279 (2004) 50197–50203. [DOI] [PMID: 15356000]
3.  Morii, H., Nishihara, M. and Koga, Y. CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus. J. Biol. Chem. 275 (2000) 36568–36574. [DOI] [PMID: 10960477]
[EC 2.5.1.42 created 1992, modified 2009]
 
 
EC 2.7.1.108     
Accepted name: dolichol kinase
Reaction: CTP + dolichol = CDP + dolichyl phosphate
Other name(s): dolichol phosphokinase
Systematic name: CTP:dolichol O-phosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71768-07-5
References:
1.  Burton, W.A., Scher, M.G. and Waechter, C.J. Enzymatic phosphorylation of dolichol in central nervous tissue. J. Biol. Chem. 254 (1979) 7129–7136. [PMID: 457672]
2.  Rip, J.W. and Carroll, K.K. Properties of a dolichol phosphokinase activity associated with rat liver microsomes. Can. J. Biochem. 58 (1980) 1051–1056. [PMID: 6257336]
[EC 2.7.1.108 created 1984]
 
 
EC 2.7.1.148     
Accepted name: 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase
Reaction: ATP + 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol = ADP + 2-phospho-4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol
For diagram of non-mevalonate terpenoid biosynthesis, click here
Other name(s): CDP-ME kinase
Systematic name: ATP:4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol 2-phosphotransferase
Comments: The enzyme from Escherichia coli requires Mg2+ or Mn2+. Forms part of an alternative nonmevalonate pathway for terpenoid biosynthesis (for diagram, click here).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 263016-77-9
References:
1.  Lüttgen, H., Rohdich, F., Herz, S., Wungsintaweekul, J., Hecht, S., Schuhr, C.A., Fellermeier, M., Sagner, S., Zenk, M.H., Bacher, A. and Eisenreich, W. Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erithritol. Proc. Natl. Acad. Sci. USA 97 (2000) 1062–1067. [DOI] [PMID: 10655484]
2.  Kuzuyama, T., Takagi, M., Kaneda, K., Watanabe, H., Dairi, T. and Seto, H. Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol to its 2-phospho derivative by 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase. Tetrahedron Lett. 41 (2000) 2925–2928.
[EC 2.7.1.148 created 2001]
 
 
EC 2.7.1.161     
Accepted name: CTP-dependent riboflavin kinase
Reaction: CTP + riboflavin = CDP + FMN
Other name(s): Methanocaldococcus jannaschii Mj0056; Mj0056
Systematic name: CTP:riboflavin 5′-phosphotransferase
Comments: This archaeal enzyme differs from EC 2.7.1.26, riboflavin kinase, in using CTP as the donor nucleotide. UTP, but not ATP or GTP, can also act as a phosphate donor but it is at least an order of magnitude less efficient than CTP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ammelburg, M., Hartmann, M.D., Djuranovic, S., Alva, V., Koretke, K.K., Martin, J., Sauer, G., Truffault, V., Zeth, K., Lupas, A.N. and Coles, M. A CTP-dependent archaeal riboflavin kinase forms a bridge in the evolution of cradle-loop barrels. Structure 15 (2007) 1577–1590. [DOI] [PMID: 18073108]
[EC 2.7.1.161 created 2008]
 
 
EC 2.7.1.174     
Accepted name: diacylglycerol kinase (CTP)
Reaction: CTP + 1,2-diacyl-sn-glycerol = CDP + 1,2-diacyl-sn-glycerol 3-phosphate
Glossary: 1,2-diacyl-sn-glycerol 3-phosphate = phosphatidate
Other name(s): DAG kinase; CTP-dependent diacylglycerol kinase; diglyceride kinase (ambiguous); DGK1 (gene name); diacylglycerol kinase (CTP dependent)
Systematic name: CTP:1,2-diacyl-sn-glycerol 3-phosphotransferase
Comments: Requires Ca2+ or Mg2+ for activity. Involved in synthesis of membrane phospholipids and the neutral lipid triacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals [cf. EC 2.7.1.107, diacylglycerol kinase (ATP)], the enzyme from Saccharomyces cerevisiae utilizes CTP. The enzyme can also use dCTP, but not ATP, GTP or UTP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Han, G.S., O'Hara, L., Carman, G.M. and Siniossoglou, S. An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. J. Biol. Chem. 283 (2008) 20433–20442. [DOI] [PMID: 18458075]
2.  Han, G.S., O'Hara, L., Siniossoglou, S. and Carman, G.M. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J. Biol. Chem. 283 (2008) 20443–20453. [DOI] [PMID: 18458076]
3.  Fakas, S., Konstantinou, C. and Carman, G.M. DGK1-encoded diacylglycerol kinase activity is required for phospholipid synthesis during growth resumption from stationary phase in Saccharomyces cerevisiae. J. Biol. Chem. 286 (2011) 1464–1474. [DOI] [PMID: 21071438]
[EC 2.7.1.174 created 2012, modified 2013]
 
 
EC 2.7.1.182     
Accepted name: phytol kinase
Reaction: CTP + phytol = CDP + phytyl phosphate
Other name(s): VTE5 (gene name)
Systematic name: CTP:phytol O-phosphotransferase
Comments: The enzyme is found in plants and photosynthetic algae [2] and is involved in phytol salvage [1]. It can use UTP as an alternative phosphate donor with lower activity [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ischebeck, T., Zbierzak, A.M., Kanwischer, M. and Dormann, P. A salvage pathway for phytol metabolism in Arabidopsis. J. Biol. Chem. 281 (2006) 2470–2477. [DOI] [PMID: 16306049]
2.  Valentin, H.E., Lincoln, K., Moshiri, F., Jensen, P.K., Qi, Q., Venkatesh, T.V., Karunanandaa, B., Baszis, S.R., Norris, S.R., Savidge, B., Gruys, K.J. and Last, R.L. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18 (2006) 212–224. [DOI] [PMID: 16361393]
[EC 2.7.1.182 created 2014]
 
 
EC 2.7.1.216     
Accepted name: farnesol kinase
Reaction: CTP + (2E,6E)-farnesol = CDP + (2E,6E)-farnesyl phosphate
For diagram of acyclic sesquiterpenoid biosynthesis, click here
Other name(s): FOLK (gene name)
Systematic name: CTP:(2E,6E)-farnesol phosphotransferase
Comments: The enzyme, found in plants and animals, can also use other nucleotide triphosphates as phosphate donor, albeit less efficiently. The plant enzyme can also use geraniol and geranylgeraniol as substrates with lower activity, but not farnesyl phosphate (cf. EC 2.7.4.32, farnesyl phosphate kinase) [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bentinger, M., Grunler, J., Peterson, E., Swiezewska, E. and Dallner, G. Phosphorylation of farnesol in rat liver microsomes: properties of farnesol kinase and farnesyl phosphate kinase. Arch. Biochem. Biophys. 353 (1998) 191–198. [DOI] [PMID: 9606952]
2.  Fitzpatrick, A.H., Bhandari, J. and Crowell, D.N. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. Plant J. 66 (2011) 1078–1088. [DOI] [PMID: 21395888]
[EC 2.7.1.216 created 2017]
 
 
EC 2.7.3.8     
Accepted name: ammonia kinase
Reaction: ATP + NH3 = ADP + phosphoramide
Other name(s): phosphoramidate-adenosine diphosphate phosphotransferase; phosphoramidate-ADP-phosphotransferase
Systematic name: ATP:ammonia phosphotransferase
Comments: Has a wide specificity. In the reverse direction, N-phosphoglycine and N-phosphohistidine can also act as phosphate donors, and ADP, dADP, GDP, CDP, dTDP, dCDP, IDP and UDP can act as phosphate acceptors (in decreasing order of activity).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37278-16-3
References:
1.  Dowler, M.J. and Nakada, H.I. Yeast phosphoramidate-adenosine diphosphate phosphotransferase. J. Biol. Chem. 243 (1968) 1434–1440. [PMID: 5647264]
[EC 2.7.3.8 created 1972]
 
 
EC 2.7.4.14     
Accepted name: UMP/CMP kinase
Reaction: (1) ATP + (d)CMP = ADP + (d)CDP
(2) ATP + UMP = ADP + UDP
Other name(s): cytidylate kinase (misleading); deoxycytidylate kinase (misleading); CTP:CMP phosphotransferase (misleading); dCMP kinase (misleading); deoxycytidine monophosphokinase (misleading); UMP-CMP kinase; ATP:UMP-CMP phosphotransferase; pyrimidine nucleoside monophosphate kinase; uridine monophosphate-cytidine monophosphate phosphotransferase
Systematic name: ATP:(d)CMP/UMP phosphotransferase
Comments: This eukaryotic enzyme is a bifunctional enzyme that catalyses the phosphorylation of both CMP and UMP with similar efficiency. dCMP can also act as acceptor. Different from the monofunctional prokaryotic enzymes EC 2.7.4.25, (d)CMP kinase and EC 2.7.4.22, UMP kinase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37278-21-0
References:
1.  Hurwitz, J. The enzymatic incorporation of ribonucleotides into polydeoxynucleotide material. J. Biol. Chem. 234 (1959) 2351–2358. [PMID: 14405566]
2.  Ruffner, B.W., Jr. and Anderson, E.P. Adenosine triphosphate: uridine monophosphate-cytidine monophosphate phosphotransferase from Tetrahymena pyriformis. J. Biol. Chem. 244 (1969) 5994–6002. [PMID: 5350952]
3.  Scheffzek, K., Kliche, W., Wiesmuller, L. and Reinstein, J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5′-adenosyl) P5-(5′-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 Å: implications for water-mediated specificity. Biochemistry 35 (1996) 9716–9727. [DOI] [PMID: 8703943]
4.  Zhou, L., Lacroute, F. and Thornburg, R. Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. Plant Physiol. 117 (1998) 245–254. [PMID: 9576794]
5.  Van Rompay, A.R., Johansson, M. and Karlsson, A. Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme. Mol. Pharmacol. 56 (1999) 562–569. [PMID: 10462544]
[EC 2.7.4.14 created 1961 as EC 2.7.4.5, transferred 1972 to EC 2.7.4.14, modified 1980, modified 2011]
 
 
EC 2.7.4.19     
Accepted name: 5-methyldeoxycytidine-5′-phosphate kinase
Reaction: ATP + 5-methyldeoxycytidine 5′-phosphate = ADP + 5-methyldeoxycytidine diphosphate
Systematic name: ATP:5-methyldeoxycytidine-5′-phosphate phosphotransferase
Comments: The enzyme, from phage XP-12-infected Xanthomonas oryzae, converts m5dCMP into m5dCDP and then into m5dCTP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81032-53-3
References:
1.  Wang, R.Y.-H., Huang, L.-H. and Ehrlich, M. A bacteriophage-induced 5-methyldeoxycytidine 5′-monophosphate kinase. Biochim. Biophys. Acta 696 (1982) 31–36. [DOI] [PMID: 7082669]
[EC 2.7.4.19 created 1984]
 
 
EC 2.7.4.25     
Accepted name: (d)CMP kinase
Reaction: ATP + (d)CMP = ADP + (d)CDP
Glossary: CMP = cytidine monophosphate
dCMP = deoxycytidine monophosphate
CDP = cytidine diphosphate
dCDP = deoxycytidine diphosphate
UMP = uridine monophosphate
UDP = uridine diphosphate
Other name(s): cmk (gene name); prokaryotic cytidylate kinase; deoxycytidylate kinase (misleading); dCMP kinase (misleading); deoxycytidine monophosphokinase (misleading)
Systematic name: ATP:(d)CMP phosphotransferase
Comments: The prokaryotic cytidine monophosphate kinase specifically phosphorylates CMP (or dCMP), using ATP as the preferred phosphoryl donor. Unlike EC 2.7.4.14, a eukaryotic enzyme that phosphorylates UMP and CMP with similar efficiency, the prokaryotic enzyme phosphorylates UMP with very low rates, and this function is catalysed in prokaryotes by EC 2.7.4.22, UMP kinase. The enzyme phosphorylates dCMP nearly as well as it does CMP [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bertrand, T., Briozzo, P., Assairi, L., Ofiteru, A., Bucurenci, N., Munier-Lehmann, H., Golinelli-Pimpaneau, B., Barzu, O. and Gilles, A.M. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. J. Mol. Biol. 315 (2002) 1099–1110. [DOI] [PMID: 11827479]
2.  Thum, C., Schneider, C.Z., Palma, M.S., Santos, D.S. and Basso, L.A. The Rv1712 Locus from Mycobacterium tuberculosis H37Rv codes for a functional CMP kinase that preferentially phosphorylates dCMP. J. Bacteriol. 191 (2009) 2884–2887. [DOI] [PMID: 19181797]
[EC 2.7.4.25 created 2011]
 
 
EC 2.7.4.32     
Accepted name: farnesyl phosphate kinase
Reaction: CTP + (2E,6E)-farnesyl phosphate = CDP + (2E,6E)-farnesyl diphosphate
For diagram of acyclic sesquiterpenoid biosynthesis, click here
Systematic name: CTP:(2E,6E)-farnesyl-phosphate phosphotransferase
Comments: The enzyme, found in plants and animals, is specific for CTP as phosphate donor. It does not use farnesol as substrate (cf. EC 2.7.1.216, farnesol kinase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bentinger, M., Grunler, J., Peterson, E., Swiezewska, E. and Dallner, G. Phosphorylation of farnesol in rat liver microsomes: properties of farnesol kinase and farnesyl phosphate kinase. Arch. Biochem. Biophys. 353 (1998) 191–198. [DOI] [PMID: 9606952]
2.  Fitzpatrick, A.H., Bhandari, J. and Crowell, D.N. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. Plant J. 66 (2011) 1078–1088. [DOI] [PMID: 21395888]
[EC 2.7.4.32 created 2017]
 
 
EC 2.7.7.8     
Accepted name: polyribonucleotide nucleotidyltransferase
Reaction: RNAn+1 + phosphate = RNAn + a nucleoside diphosphate
Other name(s): polynucleotide phosphorylase; PNPase (ambiguous); nucleoside diphosphate:polynucleotidyl transferase; polyribonucleotide phosphorylase
Systematic name: polyribonucleotide:phosphate nucleotidyltransferase
Comments: ADP, IDP, GDP, UDP and CDP can act as donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-12-4
References:
1.  Hakim, A.A. Synthetic activity of polynucleotide phosphorylase from sperm. Nature 183 (1959) 334. [PMID: 13632712]
2.  Littauer, U.Z. and Kornberg, A. Reversible synthesis of polyribonucleotides with an enzyme from Escherichia coli. J. Biol. Chem. 226 (1957) 1077–1092. [PMID: 13438894]
3.  Ochoa, S. and Mii, S. Enzymatic synthesis of polynucleotides. IV. Purification and properties of polynucleotide phosphorylase from Azotobacter vinelandii. J. Biol. Chem. 236 (1961) 3303–3311. [PMID: 14481058]
[EC 2.7.7.8 created 1961]
 
 
EC 2.7.7.14     
Accepted name: ethanolamine-phosphate cytidylyltransferase
Reaction: CTP + ethanolamine phosphate = diphosphate + CDP-ethanolamine
Other name(s): phosphorylethanolamine transferase; ET; CTP-phosphoethanolamine cytidylyltransferase; phosphoethanolamine cytidylyltransferase; ethanolamine phosphate cytidylyltransferase
Systematic name: CTP:ethanolamine-phosphate cytidylyltransferase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-33-9
References:
1.  Kennedy, E.P. and Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222 (1956) 193–214. [PMID: 13366993]
2.  Sundler, R. Ethanolaminephosphate cytidylyltransferase. Purification and characterization of the enzyme from rat liver. J. Biol. Chem. 250 (1975) 8585–8590. [PMID: 241749]
3.  Visedo-Gonzalez, E. and Dixon, H.B.F. 2-Aminoethylarsonic acid as an analogue of ethanolamine phosphate. Endowment of ethanolamine-phosphate cytidylyltransferase with CTP pyrophosphatase activity. Biochem. J. 260 (1989) 299–301. [PMID: 2549956]
[EC 2.7.7.14 created 1961]
 
 
EC 2.7.7.15     
Accepted name: choline-phosphate cytidylyltransferase
Reaction: CTP + phosphocholine = diphosphate + CDP-choline
Other name(s): phosphorylcholine transferase; CDP-choline pyrophosphorylase; CDP-choline synthetase; choline phosphate cytidylyltransferase; CTP-phosphocholine cytidylyltransferase; CTP:phosphorylcholine cytidylyltransferase; cytidine diphosphocholine pyrophosphorylase; phosphocholine cytidylyltransferase; phosphorylcholine cytidylyltransferase; phosphorylcholine:CTP cytidylyltransferase
Systematic name: CTP:phosphocholine cytidylyltransferase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-34-0
References:
1.  Borkenhagen, L.F. and Kennedy, E.P. The enzymatic synthesis of cytidine diphosphate choline. J. Biol. Chem. 227 (1957) 951–962. [PMID: 13463016]
2.  Kennedy, E.P. and Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222 (1956) 193–214. [PMID: 13366993]
3.  Williams-Ashman, H.G. and Banks, J. Participation of cytidine coenzymes in the metabolism of choline by seminal vesicles. J. Biol. Chem. 223 (1956) 509–521. [PMID: 13376620]
[EC 2.7.7.15 created 1961]
 
 
EC 2.7.7.33     
Accepted name: glucose-1-phosphate cytidylyltransferase
Reaction: CTP + α-D-glucose 1-phosphate = diphosphate + CDP-glucose
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Other name(s): CDP glucose pyrophosphorylase; cytidine diphosphoglucose pyrophosphorylase; cytidine diphosphate glucose pyrophosphorylase; cytidine diphosphate-D-glucose pyrophosphorylase; CTP:D-glucose-1-phosphate cytidylyltransferase
Systematic name: CTP:α-D-glucose-1-phosphate cytidylyltransferase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-10-5
References:
1.  Mayer, R.M. and Ginsburg, V. Purification and properties of cytidine diphosphate D-glucose pyrophosphorylase from Salmonella paratyphi A. J. Biol. Chem. 240 (1965) 1900–1904. [PMID: 14299608]
[EC 2.7.7.33 created 1972]
 
 
EC 2.7.7.39     
Accepted name: glycerol-3-phosphate cytidylyltransferase
Reaction: CTP + sn-glycerol 3-phosphate = diphosphate + CDP-glycerol
Other name(s): CDP-glycerol pyrophosphorylase; cytidine diphosphoglycerol pyrophosphorylase; cytidine diphosphate glycerol pyrophosphorylase; CTP:glycerol 3-phosphate cytidylyltransferase; Gro-PCT; tagD (gene name); tarD (gene name)
Systematic name: CTP:sn-glycerol-3-phosphate cytidylyltransferase
Comments: Involved in the biosynthesis of teichoic acid linkage units in bacterial cell walls.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-11-6
References:
1.  Shaw, D.R.D. Pyrophosphorolysis and enzymic synthesis of cytidine diphosphate glycerol and cytidine diphosphate ribitol. Biochem. J. 82 (1962) 297–312. [PMID: 13911452]
2.  Park, Y.S., Sweitzer, T.D., Dixon, J.E. and Kent, C. Expression, purification, and characterization of CTP:glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis. J. Biol. Chem. 268 (1993) 16648–16654. [PMID: 8393871]
3.  Sanker, S., Campbell, H.A. and Kent, C. Negative cooperativity of substrate binding but not enzyme activity in wild-type and mutant forms of CTP:glycerol-3-phosphate cytidylyltransferase. J. Biol. Chem. 276 (2001) 37922–37928. [DOI] [PMID: 11487587]
4.  Badurina, D.S., Zolli-Juran, M. and Brown, E.D. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. Biochim. Biophys. Acta 1646 (2003) 196–206. [DOI] [PMID: 12637027]
5.  Pattridge, K.A., Weber, C.H., Friesen, J.A., Sanker, S., Kent, C. and Ludwig, M.L. Glycerol-3-phosphate cytidylyltransferase. Structural changes induced by binding of CDP-glycerol and the role of lysine residues in catalysis. J. Biol. Chem. 278 (2003) 51863–51871. [DOI] [PMID: 14506262]
[EC 2.7.7.39 created 1972]
 
 
EC 2.7.7.40     
Accepted name: D-ribitol-5-phosphate cytidylyltransferase
Reaction: CTP + D-ribitol 5-phosphate = diphosphate + CDP-ribitol
Other name(s): CDP ribitol pyrophosphorylase; cytidine diphosphate ribitol pyrophosphorylase; ribitol 5-phosphate cytidylyltransferase; cytidine diphosphoribitol pyrophosphorylase
Systematic name: CTP:D-ribitol-5-phosphate cytidylyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-07-0
References:
1.  Shaw, D.R.D. Pyrophosphorolysis and enzymic synthesis of cytidine diphosphate glycerol and cytidine diphosphate ribitol. Biochem. J. 82 (1962) 297–312. [PMID: 13911452]
[EC 2.7.7.40 created 1972]
 
 
EC 2.7.7.41     
Accepted name: phosphatidate cytidylyltransferase
Reaction: CTP + phosphatidate = diphosphate + CDP-diacylglycerol
Other name(s): CDP diglyceride pyrophosphorylase; CDP-diacylglycerol synthase; CDP-diacylglyceride synthetase; cytidine diphosphoglyceride pyrophosphorylase; phosphatidate cytidyltransferase; phosphatidic acid cytidylyltransferase; CTP:1,2-diacylglycerophosphate-cytidyl transferase; CTP-diacylglycerol synthetase; DAG synthetase; CDP-DG
Systematic name: CTP:phosphatidate cytidylyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9067-83-8
References:
1.  Carter, J.R. and Kennedy, E.P. Enzymatic synthesis of cytidine diphosphate diglyceride. J. Lipid Res. 7 (1966) 678–683. [PMID: 4291255]
2.  McCaman, R.E. and Finnerty, W.R. Biosynthesis of cytidine diphosphate-diglyceride by a particulate fraction from Micrococcus cerificans. J. Biol. Chem. 243 (1968) 5074–5080. [PMID: 5679981]
3.  Petzold, G.L. and Agranoff, B.W. The biosynthesis of cytidine diphosphate diglyceride by embryonic chick brain. J. Biol. Chem. 242 (1967) 1187–1191. [PMID: 6067194]
[EC 2.7.7.41 created 1972]
 
 
EC 2.7.7.57     
Accepted name: N-methylphosphoethanolamine cytidylyltransferase
Reaction: CTP + N-methylethanolamine phosphate = diphosphate + CDP-N-methylethanolamine
Other name(s): monomethylethanolamine phosphate cytidylyltransferase; CTP:P-MEA cytidylyltransferase
Systematic name: CTP:N-methylethanolamine-phosphate cytidylyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119345-28-7
References:
1.  Datko, A.H. and Mudd, S.H. Enzymes of phosphatidylcholine synthesis in Lemna, soybean, and carrot. Plant Physiol. 88 (1988) 1338–1348. [PMID: 16666464]
[EC 2.7.7.57 created 1992]
 
 
EC 2.7.7.67     
Accepted name: CDP-2,3-bis-(O-geranylgeranyl)-sn-glycerol synthase
Reaction: CTP + 2,3-bis-(O-geranylgeranyl)-sn-glycerol 1-phosphate = diphosphate + CDP-2,3-bis-(O-geranylgeranyl)-sn-glycerol
For diagram of archaetidylserine biosynthesis, click here
Glossary: 2,3-bis-(O-geranylgeranyl)-sn-glycerol 1-phosphate = 2,3-bis-(O-geranylgeranyl)-glycerophosphate ether = unsaturated archaetidic acid
CDP-unsaturated archaeol = CDP-2,3-bis-(O-geranylgeranyl)-sn-glycerol
Other name(s): carS (gene name); CDP-2,3-di-O-geranylgeranyl-sn-glycerol synthase; CTP:2,3-GG-GP ether cytidylyltransferase; CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase; CDP-2,3-bis-O-(geranylgeranyl)-sn-glycerol synthase; CTP:2,3-bis-O-(geranylgeranyl)-sn-glycero-1-phosphate cytidylyltransferase; CDP-unsaturated archaeol synthase; CDP-archaeol synthase (incorrect)
Systematic name: CTP:2,3-bis-(O-geranylgeranyl)-sn-glycerol 1-phosphate cytidylyltransferase
Comments: This enzyme catalyses one of the steps in the biosynthesis of polar lipids in archaea, which are characterized by having an sn-glycerol 1-phosphate backbone rather than an sn-glycerol 3-phosphate backbone as is found in bacteria and eukaryotes [1]. The enzyme requires Mg2+ and K+ for maximal activity [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 329791-09-5
References:
1.  Morii, H., Nishihara, M. and Koga, Y. CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus. J. Biol. Chem. 275 (2000) 36568–36574. [DOI] [PMID: 10960477]
2.  Morii, H. and Koga, Y. CDP-2,3-di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) in the methanogenic archaeon Methanothermobacter thermautotrophicus. J. Bacteriol. 185 (2003) 1181–1189. [DOI] [PMID: 12562787]
3.  Jain, S., Caforio, A., Fodran, P., Lolkema, J.S., Minnaard, A.J. and Driessen, A.J. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. Chem. Biol. 21 (2014) 1392–1401. [DOI] [PMID: 25219966]
[EC 2.7.7.67 created 2009, modified 2014]
 
 
EC 2.7.7.74     
Accepted name: 1L-myo-inositol 1-phosphate cytidylyltransferase
Reaction: CTP + 1L-myo-inositol 1-phosphate = diphosphate + CDP-1L-myo-inositol
For diagram of bis(1L-myo-inositol) 1,3′-phosphate biosynthesis, click here
Glossary: 1L-myo-inositol 1-phosphate = 1D-myo-inositol 3-phosphate
Other name(s): CTP:inositol-1-phosphate cytidylyltransferase (bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase (IPCT/DIPPS)); IPCT (bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase (IPCT/DIPPS)); L-myo-inositol-1-phosphate cytidylyltransferase
Systematic name: CTP:1L-myo-inositol 1-phosphate cytidylyltransferase
Comments: In many organisms this activity is catalysed by a bifunctional enzyme. The cytidylyltransferase domain of the bifunctional EC 2.7.7.74/EC 2.7.8.34 (CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase) is absolutely specific for CTP and 1L-myo-inositol 1-phosphate. The enzyme is involved in biosynthesis of bis(1L-myo-inositol) 1,3′-phosphate, a widespread organic solute in microorganisms adapted to hot environments.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rodrigues, M.V., Borges, N., Henriques, M., Lamosa, P., Ventura, R., Fernandes, C., Empadinhas, N., Maycock, C., da Costa, M.S. and Santos, H. Bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, the key enzyme for di-myo-inositol-phosphate synthesis in several (hyper)thermophiles. J. Bacteriol. 189 (2007) 5405–5412. [DOI] [PMID: 17526717]
[EC 2.7.7.74 created 2011]
 
 
EC 2.7.8.1     
Accepted name: ethanolaminephosphotransferase
Reaction: CDP-ethanolamine + 1,2-diacyl-sn-glycerol = CMP + a phosphatidylethanolamine
Other name(s): EPT; diacylglycerol ethanolaminephosphotransferase; CDPethanolamine diglyceride phosphotransferase; phosphorylethanolamine-glyceride transferase; CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase
Systematic name: CDP-ethanolamine:1,2-diacyl-sn-glycerol ethanolaminephosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-19-1
References:
1.  Kennedy, E.P. and Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222 (1956) 193–214. [PMID: 13366993]
[EC 2.7.8.1 created 1961]
 
 
EC 2.7.8.2     
Accepted name: diacylglycerol cholinephosphotransferase
Reaction: CDP-choline + 1,2-diacyl-sn-glycerol = CMP + a phosphatidylcholine
Other name(s): phosphorylcholine-glyceride transferase; alkylacylglycerol cholinephosphotransferase; 1-alkyl-2-acetylglycerol cholinephosphotransferase; cholinephosphotransferase; CPT (ambiguous); alkylacylglycerol choline phosphotransferase; diacylglycerol choline phosphotransferase; 1-alkyl-2-acetyl-m-glycerol:CDPcholine choline phosphotransferase; CDP-choline diglyceride phosphotransferase; cytidine diphosphocholine glyceride transferase; cytidine diphosphorylcholine diglyceride transferase; phosphocholine diacylglyceroltransferase; sn-1,2-diacylglycerol cholinephosphotransferase; 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase; CDP choline:1,2-diacylglycerol cholinephosphotransferase; CDP-choline:1,2-diacylglycerol cholinephosphotransferase
Systematic name: CDP-choline:1,2-diacyl-sn-glycerol cholinephosphotransferase
Comments: 1-Alkyl-2-acylglycerol can act as acceptor; this activity was previously listed separately.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-13-5
References:
1.  Coleman, R. and Bell, R.M. Phospholipid synthesis in isolated fat cells. Studies of microsomal diacylglycerol cholinephosphotransferase and diacylglycerol ethanolaminephosphotransferase activities. J. Biol. Chem. 252 (1977) 3050–3056. [PMID: 192727]
2.  Lee, T.-C., Blank, M.L., Fitzgerald, V. and Snyder, F. Formation of alkylacyl- and diacylglycerophosphocholines via diradylglycerol cholinephosphotransferase in rat liver. Biochim. Biophys. Acta 713 (1982) 479–483. [DOI] [PMID: 6295501]
3.  Parsasarathy, S., Cady, R.K., Kraushaar, D.S., Sladek, N.E. and Baumann, W.J. Inhibition of diacylglycerol:CDPcholine cholinephosphotransferase activity by dimethylaminoethyl p-chlorophenoxyacetate. Lipids 13 (1978) 161–164. [DOI] [PMID: 204847]
4.  Renooij, W. and Snyder, F. Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor and a hypotensive lipid) by cholinephosphotransferase in various rat tissues. Biochim. Biophys. Acta 663 (1981) 545–556. [DOI] [PMID: 6260215]
[EC 2.7.8.2 created 1961, modified 1986 (EC 2.7.8.16 created 1983, incorporated 1986)]
 
 
EC 2.7.8.3     
Accepted name: ceramide cholinephosphotransferase
Reaction: CDP-choline + a ceramide = CMP + sphingomyelin
Glossary: a ceramide = an N-acylsphingosine
Other name(s): phosphorylcholine-ceramide transferase
Systematic name: CDP-choline:N-acylsphingosine cholinephosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-14-6
References:
1.  Kennedy, E.P. Phosphorylcholine-glyceride transferase. Methods Enzymol. 5 (1962) 484–486.
2.  Sribney, M. and Kennedy, E.P. The enzymatic synthesis of sphingomyelin. J. Biol. Chem. 233 (1958) 1315–1322. [PMID: 13610834]
[EC 2.7.8.3 created 1965]
 
 
EC 2.7.8.4     
Accepted name: serine-phosphoethanolamine synthase
Reaction: CDP-ethanolamine + L-serine = CMP + L-serine-phosphoethanolamine
Other name(s): serine ethanolamine phosphate synthetase; serine ethanolamine phosphodiester synthase; serine ethanolaminephosphotransferase; serine-phosphinico-ethanolamine synthase; serinephosphoethanolamine synthase
Systematic name: CDP-ethanolamine:L-serine ethanolamine phosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9023-23-8
References:
1.  Allen, A.K. and Rosenberg, H. The mechanism of action and some properties of serine ethanolamine phosphate synthetase. Biochim. Biophys. Acta 151 (1968) 504–519. [DOI] [PMID: 5636380]
[EC 2.7.8.4 created 1972, modified 1976]
 
 
EC 2.7.8.5     
Accepted name: CDP-diacylglycerol—glycerol-3-phosphate 1-phosphatidyltransferase
Reaction: CDP-diacylglycerol + sn-glycerol 3-phosphate = CMP + 1-(3-sn-phosphatidyl)-sn-glycerol 3-phosphate
Other name(s): glycerophosphate phosphatidyltransferase; 3-phosphatidyl-1′-glycerol-3′-phosphate synthase; CDPdiacylglycerol:glycerol-3-phosphate phosphatidyltransferase; cytidine 5′-diphospho-1,2-diacyl-sn-glycerol (CDP-diglyceride):sn-glycerol-3-phosphate phosphatidyltransferase; phosphatidylglycerophosphate synthase; phosphatidylglycerolphosphate synthase; PGP synthase; CDP-diacylglycerol-sn-glycerol-3-phosphate 3-phosphatidyltransferase; CDP-diacylglycerol:sn-glycero-3-phosphate phosphatidyltransferase; glycerol phosphate phosphatidyltransferase; glycerol 3-phosphate phosphatidyltransferase; phosphatidylglycerol phosphate synthase; phosphatidylglycerol phosphate synthetase; phosphatidylglycerophosphate synthetase; sn-glycerol-3-phosphate phosphatidyltransferase
Systematic name: CDP-diacylglycerol:sn-glycerol-3-phosphate 1-(3-sn-phosphatidyl)transferase
Comments: The enzyme catalyses the committed step in the biosynthesis of acidic phospholipids known by the common names phophatidylglycerols and cardiolipins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9068-49-9
References:
1.  Hirabayashi, T. Larson, T.J. and Dowhan, W. Membrane-associated phosphatidylglycerophosphate synthetase from Escherichia coli: Purification by substrate affinity chromatography on cytidine 5′-diphospho-1,2-diacyl-sn-glycerol sepharose. Biochemistry 15 (1976) 5205–5211. [PMID: 793612]
2.  Bleasdale, J.E. and Johnston, J.M. CMP-dependent incorporation of [14C]glycerol 3-phosphate into phosphatidylglycerol and phosphatidylglycerol phosphate by rabbit lung microsomes. Biochim. Biophys. Acta 710 (1982) 377–390. [DOI] [PMID: 7074121]
3.  Dowhan, W. Phosphatidylglycerophosphate synthase from Escherichia coli. Methods Enzymol. 209 (1992) 313–321. [DOI] [PMID: 1323047]
4.  Kawasaki, K., Kuge, O., Chang, S.C., Heacock, P.N., Rho, M., Suzuki, K., Nishijima, M. and Dowhan, W. Isolation of a chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J. Biol. Chem. 274 (1999) 1828–1834. [DOI] [PMID: 9880566]
5.  Muller, F. and Frentzen, M. Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett. 509 (2001) 298–302. [DOI] [PMID: 11741606]
6.  Babiychuk, E., Muller, F., Eubel, H., Braun, H.P., Frentzen, M. and Kushnir, S. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J. 33 (2003) 899–909. [DOI] [PMID: 12609031]
[EC 2.7.8.5 created 1972, modified 1976, modified 2016]
 
 
EC 2.7.8.8     
Accepted name: CDP-diacylglycerol—serine O-phosphatidyltransferase
Reaction: CDP-diacylglycerol + L-serine = CMP + (3-sn-phosphatidyl)-L-serine
Other name(s): phosphatidylserine synthase; CDPdiglyceride-serine O-phosphatidyltransferase; PS synthase; cytidine 5′-diphospho-1,2-diacyl-sn-glycerol (CDPdiglyceride):L-serine O-phosphatidyltransferase; phosphatidylserine synthetase; CDP-diacylglycerol-L-serine O-phosphatidyltransferase; cytidine diphosphoglyceride-serine O-phosphatidyltransferase; CDP-diglyceride-L-serine phosphatidyltransferase; CDP-diglyceride:serine phosphatidyltransferase; cytidine 5′-diphospho-1,2-diacyl-sn-glycerol:L-serine O-phosphatidyltransferase; CDP-diacylglycerol:L-serine 3-O-phosphatidyltransferase
Systematic name: CDP-diacylglycerol:L-serine 3-sn-phosphatidyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9068-48-8
References:
1.  Larson, T.J. and Dowhan, W. Ribosomal-associated phosphatidylserine synthetase from Escherichia coli: purification by substrate-specific elution from phosphocellulose using cytidine 5′-diphospho-1,2-diacyl-sn-glycerol. Biochemistry 15 (1976) 5212–5218. [PMID: 187212]
2.  Raetz, C.R.H. and Kennedy, E.P. Partial purification and properties of phosphatidylserine synthetase from Escherichia coli. J. Biol. Chem. 249 (1974) 5038–5045. [PMID: 4604873]
[EC 2.7.8.8 created 1972, modified 1976]
 
 
EC 2.7.8.10     
Accepted name: sphingosine cholinephosphotransferase
Reaction: CDP-choline + sphingosine = CMP + sphingosyl-phosphocholine
Other name(s): CDP-choline-sphingosine cholinephosphotransferase; phosphorylcholine-sphingosine transferase; cytidine diphosphocholine-sphingosine cholinephosphotransferase; sphingosine choline phosphotransferase
Systematic name: CDP-choline:sphingosine cholinephosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9027-12-7
References:
1.  Fujino, Y., Nigishi, T. and Ito, S. Enzymic synthesis of sphingosylphosphorylcholine. Biochem. J. 109 (1968) 310–311. [PMID: 5679375]
[EC 2.7.8.10 created 1972, modified 1976]
 
 
EC 2.7.8.11     
Accepted name: CDP-diacylglycerol—inositol 3-phosphatidyltransferase
Reaction: CDP-diacylglycerol + myo-inositol = CMP + 1-phosphatidyl-1D-myo-inositol
For diagram of 1-phosphatidyl-myo-inositol metabolism, click here
Glossary: 1-phosphatidyl-1D-myo-inositol = PtdIns
Other name(s): CDP-diglyceride-inositol phosphatidyltransferase; phosphatidylinositol synthase; CDP-diacylglycerol-inositol phosphatidyltransferase; CDP-diglyceride:inositol transferase; cytidine 5′-diphospho-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase; CDP-DG:inositol transferase; cytidine diphosphodiglyceride-inositol phosphatidyltransferase; CDP-diacylglycerol:myo-inositol-3-phosphatidyltransferase; CDP-diglyceride-inositol transferase; cytidine diphosphoglyceride-inositol phosphatidyltransferase; cytidine diphosphoglyceride-inositol transferase
Systematic name: CDP-diacylglycerol:myo-inositol 3-phosphatidyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-01-4
References:
1.  Bleasdale, J.E., Wallis, P., MacDonald, P.C. and Johnston, J.M. Characterization of the forward and reverse reactions catalyzed by CDP-diacylglycerol:inositol transferase in rabbit lung tissue. Biochim. Biophys. Acta 575 (1979) 135–147. [DOI] [PMID: 41587]
2.  Prottey, C. and Hawthorne, J.N. The biosynthesis of phosphatidic acid and phosphatidylinositol in mammalian pancreas. Biochem. J. 105 (1967) 379–392. [PMID: 4293959]
3.  Salway, J.G., Harewood, J.L., Kai, M., White, G.L. and Hawthorne, J.N. Enzymes of phosphoinositide metabolism during rat brain development. J. Neurochem. 15 (1968) 221–226. [DOI] [PMID: 4295616]
4.  Takenawa, T. and Egawa, K. CDP-diglyceride:inositol transferase from rat liver. Purification and properties. J. Biol. Chem. 252 (1977) 5419–5423. [PMID: 18462]
[EC 2.7.8.11 created 1972, modified 1976]
 
 
EC 2.7.8.12     
Accepted name: teichoic acid poly(glycerol phosphate) polymerase
Reaction: n CDP-glycerol + 4-O-[(2R)-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n CMP + 4-O-{poly[(2R)-glycerophospho]-(2R)-glycerophospho}-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): teichoic-acid synthase; cytidine diphosphoglycerol glycerophosphotransferase; poly(glycerol phosphate) polymerase; teichoic acid glycerol transferase; glycerophosphate synthetase; CGPTase; CDP-glycerol glycerophosphotransferase (ambiguous); Tag polymerase; CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase; tagF (gene name); tarF (gene name) (ambiguous)
Systematic name: CDP-glycerol:4-O-[(2R)-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol glycerophosphotransferase
Comments: Involved in the biosynthesis of poly glycerol phosphate teichoic acids in bacterial cell walls. This enzyme adds 30–50 glycerol units to the linker molecule, but only after it has been primed with the first glycerol unit by EC 2.7.8.44, teichoic acid poly(glycerol phosphate) primase. cf. EC 2.7.8.45, teichoic acid glycerol-phosphate transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9076-71-5
References:
1.  Burger, M.M. and Glaser, L. The synthesis of teichoic acids. I. Polyglycerophosphate. J. Biol. Chem. 239 (1964) 3168–3177. [PMID: 14245357]
2.  Schertzer, J.W. and Brown, E.D. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. J. Biol. Chem. 278 (2003) 18002–18007. [DOI] [PMID: 12637499]
3.  Schertzer, J.W., Bhavsar, A.P. and Brown, E.D. Two conserved histidine residues are critical to the function of the TagF-like family of enzymes. J. Biol. Chem. 280 (2005) 36683–36690. [DOI] [PMID: 16141206]
4.  Pereira, M.P., Schertzer, J.W., D'Elia, M.A., Koteva, K.P., Hughes, D.W., Wright, G.D. and Brown, E.D. The wall teichoic acid polymerase TagF efficiently synthesizes poly(glycerol phosphate) on the TagB product lipid III. ChemBioChem 9 (2008) 1385–1390. [DOI] [PMID: 18465758]
5.  Sewell, E.W., Pereira, M.P. and Brown, E.D. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. J. Biol. Chem. 284 (2009) 21132–21138. [DOI] [PMID: 19520862]
6.  Lovering, A.L., Lin, L.Y., Sewell, E.W., Spreter, T., Brown, E.D. and Strynadka, N.C. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Nat. Struct. Mol. Biol. 17 (2010) 582–589. [DOI] [PMID: 20400947]
7.  Brown, S., Meredith, T., Swoboda, J. and Walker, S. Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chem. Biol. 17 (2010) 1101–1110. [DOI] [PMID: 21035733]
[EC 2.7.8.12 created 1972, modified 1982, modified 2017]
 
 
EC 2.7.8.14     
Accepted name: CDP-ribitol ribitolphosphotransferase
Reaction: n CDP-ribitol + 4-O-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n CMP + 4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): teichoic-acid synthase (ambiguous); polyribitol phosphate synthetase (ambiguous); teichoate synthetase (ambiguous); poly(ribitol phosphate) synthetase (ambiguous); polyribitol phosphate polymerase (ambiguous); teichoate synthase (ambiguous); CDP-ribitol:poly(ribitol phosphate) ribitolphosphotransferase
Systematic name: CDP-ribitol:4-O-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol ribitolphosphotransferase
Comments: Involved in the biosynthesis of poly ribitol phosphate teichoic acids in the cell wall of the bacterium Staphylococcus aureus. This enzyme adds around 40 ribitol units to the linker molecule.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-71-5
References:
1.  Ishimoto, N. and Strominger, J.L. Polyribitol phosphate synthetase of Staphylococcus aureus. J. Biol. Chem. 241 (1966) 639–650. [PMID: 5908130]
2.  Brown, S., Zhang, Y.H. and Walker, S. A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem. Biol. 15 (2008) 12–21. [DOI] [PMID: 18215769]
3.  Pereira, M.P., D'Elia, M.A., Troczynska, J. and Brown, E.D. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J. Bacteriol. 190 (2008) 5642–5649. [DOI] [PMID: 18556787]
4.  Brown, S., Meredith, T., Swoboda, J. and Walker, S. Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chem. Biol. 17 (2010) 1101–1110. [DOI] [PMID: 21035733]
[EC 2.7.8.14 created 1972 as EC 2.4.1.55, transferred 1982 to EC 2.7.8.14, modified 2017]
 
 
EC 2.7.8.22     
Accepted name: 1-alkenyl-2-acylglycerol choline phosphotransferase
Reaction: CDP-choline + 1-alkenyl-2-acylglycerol = CMP + plasmenylcholine
Other name(s): CDP-choline-1-alkenyl-2-acyl-glycerol phosphocholinetransferase
Systematic name: CDP-choline:1-alkenyl-2-acylglycerol cholinephosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 113066-36-7
References:
1.  Wientzek, M., Man, R.Y.K. and Choy, P.C. Choline glycerophospholipid biosynthesis in the guinea pig heart. Biochem. Cell. Biol. 65 (1987) 860–868. [PMID: 3447597]
[EC 2.7.8.22 created 1990]
 
 
EC 2.7.8.24     
Accepted name: phosphatidylcholine synthase
Reaction: CDP-diacylglycerol + choline = CMP + phosphatidylcholine
Other name(s): CDP-diglyceride-choline O-phosphatidyltransferase
Systematic name: CDP-diacylglycerol:choline O-phosphatidyltransferase
Comments: Requires divalent cations, with Mn2+ being more effective than Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 243666-86-6
References:
1.  de Rudder, K.E.E., Sohlenkamp, C. and Geiger, O. Plant-exudated choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J. Biol. Chem. 274 (1999) 20011–20016. [DOI] [PMID: 10391951]
2.  Sohlenkamp, C., de Rudder, K.E.E., Röhrs, V., López-Lara, I.M. and Geiger, O. Cloning and characterization of the gene for phosphatidylcholine synthase. J. Biol. Chem. 275 (2000) 18919–18925. [DOI] [PMID: 10858449]
[EC 2.7.8.24 created 2001]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald