The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

EC 5.1.3.30     
Accepted name: D-psicose 3-epimerase
Reaction: D-psicose = D-fructose
Glossary: D-psicose = D-ribo-hex-2-ulose = D-allulose
Other name(s): D-allulose 3-epimerase; DPEase (ambiguous)
Systematic name: D-psicose 3-epimerase
Comments: The enzyme is highly specific for D-psicose and shows very low activity with D-tagatose (cf. EC 5.1.3.31, D-tagatose 3-epimerase). The enzyme from the bacterium Clostridium scindens requires Mn2+ [1], whereas the enzymes from the bacteria Clostridium cellulolyticum [2,5], Clostridium sp. BNL1100 [3], and Clostridium bolteae [4] require Co2+ as optimum cofactor. The enzyme from Ruminococcus sp. [6] is not dependent on the presence of metal ions, but its activity is enhanced by Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mu, W., Chu, F., Xing, Q., Yu, S., Zhou, L. and Jiang, B. Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. J. Agric. Food Chem. 59 (2011) 7785–7792. [DOI] [PMID: 21663329]
2.  Chan, H.C., Zhu, Y., Hu, Y., Ko, T.P., Huang, C.H., Ren, F., Chen, C.C., Ma, Y., Guo, R.T. and Sun, Y. Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars. Protein Cell 3 (2012) 123–131. [DOI] [PMID: 22426981]
3.  Zhu, Y., Men, Y., Bai, W., Li, X., Zhang, L., Sun, Y. and Ma, Y. Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biotechnol. Lett. 34 (2012) 1901–1906. [DOI] [PMID: 22760176]
4.  Zhang, W., Fang, D., Xing, Q., Zhou, L., Jiang, B. and Mu, W. Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704. PLoS One 8:e62987 (2013). [DOI] [PMID: 23646168]
5.  Mu, W., Zhang, W., Fang, D., Zhou, L., Jiang, B. and Zhang, T. Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp. Biotechnol. Lett. 35 (2013) 1481–1486. [DOI] [PMID: 23660703]
6.  Jia, M., Mu, W., Chu, F., Zhang, X., Jiang, B., Zhou, L.L. and Zhang, T. A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization. Appl. Microbiol. Biotechnol. 98 (2014) 717–725. [DOI] [PMID: 23644747]
[EC 5.1.3.30 created 2014]
 
 
EC 5.1.3.31     
Accepted name: D-tagatose 3-epimerase
Reaction: (1) D-tagatose = D-sorbose
(2) D-psicose = D-fructose
For diagram of tagatose metabolism, click here
Glossary: D-psicose = D-ribo-hex-2-ulose
Other name(s): L-ribulose 3-epimerase; ketose 3-epimerase
Systematic name: D-tagatose 3-epimerase
Comments: The enzymes isolated from the bacteria Pseudomonas cichorii [2], Pseudomonas sp. ST-24 [1], Rhodobacter sphaeroides [3] and Mesorhizobium loti [4] catalyse the epimerization of various ketoses at the C-3 position, interconverting D-fructose and D-psicose, D-tagatose and D-sorbose, D-ribulose and D-xylulose, and L-ribulose and L-xylulose. The specificity depends on the species. The enzymes from Pseudomonas cichorii and Rhodobacter sphaeroides require Mn2+ [2,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Itoh, H., Okaya, H., Khan, A. R., Tajima, S., Hayakawa, S., Izumori, K. Purification and characterization of D-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci. Biotechnol. Biochem. 58 (1994) 2168–2171.
2.  Yoshida, H., Yamada, M., Nishitani, T., Takada, G., Izumori, K. and Kamitori, S. Crystal structures of D-tagatose 3-epimerase from Pseudomonas cichorii and its complexes with D-tagatose and D-fructose. J. Mol. Biol. 374 (2007) 443–453. [DOI] [PMID: 17936787]
3.  Zhang, L., Mu, W., Jiang, B. and Zhang, T. Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose. Biotechnol. Lett. 31 (2009) 857–862. [DOI] [PMID: 19205890]
4.  Uechi, K., Takata, G., Fukai, Y., Yoshihara, A. and Morimoto, K. Gene cloning and characterization of L-ribulose 3-epimerase from Mesorhizobium loti and its application to rare sugar production. Biosci. Biotechnol. Biochem. 77 (2013) 511–515. [DOI] [PMID: 23470755]
[EC 5.1.3.31 created 2014]
 
 
EC 5.3.1.3     
Accepted name: D-arabinose isomerase
Reaction: D-arabinose = D-ribulose
For diagram of D-arabinose catabolism, click here
Other name(s): D-arabinose(L-fucose) isomerase; L-fucose isomerase; D-arabinose ketol-isomerase; arabinose isomerase (misleading)
Systematic name: D-arabinose aldose-ketose-isomerase
Comments: Requires a divalent metal ion (the enzyme from the bacterium Escherichia coli prefers Mn2+). The enzyme binds the closed form of the sugar and catalyses ring opening to generate a form of open-chain conformation that facilitates the isomerization reaction, which proceeds via an ene-diol mechanism [3]. The enzyme catalyses the aldose-ketose isomerization of several sugars. Most enzymes also catalyse the reaction of EC 5.3.1.25, L-fucose isomerase [3]. The enzyme from the bacterium Falsibacillus pallidus also converts D-altrose to D-psicose [4]. cf. EC 5.3.1.4, L-arabinose isomerase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9023-81-8
References:
1.  Cohen, S.S. Studies on D-ribulose and its enzymatic conversion to D-arabinose. J. Biol. Chem. 201 (1953) 71–84. [PMID: 13044776]
2.  Green, M. and Cohen, S.S. Enzymatic conversion of L-fucose to L-fuculose. J. Biol. Chem. 219 (1956) 557–568. [PMID: 13319278]
3.  Seemann, J.E. and Schulz, G.E. Structure and mechanism of L-fucose isomerase from Escherichia coli. J. Mol. Biol. 273 (1997) 256–268. [DOI] [PMID: 9367760]
4.  Takeda, K., Yoshida, H., Izumori, K. and Kamitori, S. X-ray structures of Bacillus pallidus D-arabinose isomerase and its complex with L-fucitol. Biochim. Biophys. Acta 1804 (2010) 1359–1368. [DOI] [PMID: 20123133]
[EC 5.3.1.3 created 1961, modified 2013]
 
 
EC 5.3.1.14     
Accepted name: L-rhamnose isomerase
Reaction: L-rhamnopyranose = L-rhamnulose
For diagram of L-Rhamnose metabolism, click here
Other name(s): rhamnose isomerase; L-rhamnose ketol-isomerase
Systematic name: L-rhamnose aldose-ketose-isomerase
Comments: Contains two divalent metal ions located at different metal-binding sites within the active site. The enzyme binds the closed ring form of the substrate and catalyses ring opening to generate a form of open-chain conformation that is coordinated to one of the metal sites. Isomerization proceeds via a hydride-shift mechanism. While the enzyme from the bacterium Escherichia coli is specific for L-rhamnose, the enzyme from the bacterium Pseudomonas stutzeri has broad substrate specificity and catalyses the interconversion of L-mannose and L-fructose, L-lyxose and L-xylulose, D-ribose and D-ribulose, and D-allose and D-psicose [2].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9023-84-1
References:
1.  Domagk, G.F. and Zech, R. Über den Abbau der Desoxyzucker durch Bakterienenzyme. I. L-Rhamnose-Isomerase aus Lactobacillus plantarum. Biochem. Z. 339 (1963) 145–153. [PMID: 14095156]
2.  Leang, K., Takada, G., Ishimura, A., Okita, M. and Izumori, K. Cloning, nucleotide sequence, and overexpression of the L-rhamnose isomerase gene from Pseudomonas stutzeri in Escherichia coli. Appl. Environ. Microbiol. 70 (2004) 3298–3304. [DOI] [PMID: 15184124]
3.  Korndorfer, I.P., Fessner, W.D. and Matthews, B.W. The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J. Mol. Biol. 300 (2000) 917–933. [DOI] [PMID: 10891278]
4.  Yoshida, H., Yamada, M., Ohyama, Y., Takada, G., Izumori, K. and Kamitori, S. The structures of L-rhamnose isomerase from Pseudomonas stutzeri in complexes with L-rhamnose and D-allose provide insights into broad substrate specificity. J. Mol. Biol. 365 (2007) 1505–1516. [DOI] [PMID: 17141803]
[EC 5.3.1.14 created 1965]
 
 
EC 5.3.1.25     
Accepted name: L-fucose isomerase
Reaction: L-fucopyranose = L-fuculose
Systematic name: L-fucose aldose-ketose-isomerase
Comments: Requires a divalent metal ion (the enzyme from the bacterium Escherichia coli prefers Mn2+). The enzyme binds the closed form of the sugar and catalyses ring opening to generate a form of open-chain conformation that facilitates the isomerization reaction, which proceeds via an ene-diol mechanism [3]. The enzyme from Escherichia coli can also convert D-arabinose to D-ribulose [1]. The enzyme from the thermophilic bacterium Caldicellulosiruptor saccharolyticus also converts D-altrose to D-psicose and L-galactose to L-tagatose [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60063-83-4
References:
1.  Green, M. and Cohen, S.S. Enzymatic conversion of L-fucose to L-fuculose. J. Biol. Chem. 219 (1956) 557–568. [PMID: 13319278]
2.  Lu, Z., Lin, E.C.C. The nucleotide sequence of Escherichia coli genes for L-fucose dissimilation. Nucleic Acids Res. 17 (1989) 4883–4884. [DOI] [PMID: 2664711]
3.  Seemann, J.E. and Schulz, G.E. Structure and mechanism of L-fucose isomerase from Escherichia coli. J. Mol. Biol. 273 (1997) 256–268. [DOI] [PMID: 9367760]
4.  Ju, Y.H. and Oh, D.K. Characterization of a recombinant L-fucose isomerase from Caldicellulosiruptor saccharolyticus that isomerizes L-fucose, D-arabinose, D-altrose, and L-galactose. Biotechnol. Lett. 32 (2010) 299–304. [DOI] [PMID: 19856146]
[EC 5.3.1.25 created 1999]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald