The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

EC 1.14.14.181     
Accepted name: sulfoquinovose monooxygenase
Reaction: 6-sulfo-D-quinovose + FMNH2 + O2 = 6-dehydro-D-glucose + FMN + sulfite + H2O
Glossary: D-quinovose = 6-deoxy-D-glucopyranose
6-dehydro-D-glucose = 6-oxo-D-quinovose
Other name(s): 6-deoxy-6-sulfo-D-glucose monooxygenase; smoC (gene name); squD (gene name)
Systematic name: 6-sulfo-D-quinovose,FMNH2:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacteria Agrobacterium fabrum and Rhizobium oryzae, is involved in a D-sulfoquinovose degradation pathway. FMNH2 is provided by an associated FMN reductase [SmoA, EC 1.5.1.42, FMN reductase (NADH)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Liu, J., Wei, Y., Ma, K., An, J., Liu, X., Liu, Y., Ang, E.L., Zhao, H. and Zhang, Y. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal. 11 (2021) 14740–14750. [DOI]
2.  Sharma, M., Lingford, J.P., Petricevic, M., Snow, A.J.D., Zhang, Y., Jarva, M.A., Mui, J.W., Scott, N.E., Saunders, E.C., Mao, R., Epa, R., da Silva, B.M., Pires, D.E.V., Ascher, D.B., McConville, M.J., Davies, G.J., Williams, S.J. and Goddard-Borger, E.D. Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc. Natl. Acad. Sci. USA 119 (2022) e2116022119. [DOI] [PMID: 35074914]
[EC 1.14.14.181 created 20022]
 
 
EC 2.2.1.14     
Accepted name: 6-deoxy-6-sulfo-D-fructose transaldolase
Reaction: 6-deoxy-6-sulfo-D-fructose + D-glyceraldehyde 3-phosphate = (2S)-3-sulfolactaldehyde + β-D-fructofuranose 6-phosphate
Glossary: (2S)-3-sulfolactaldehyde = (2S)-2-hydroxy-3-oxopropane-1-sulfonate
Other name(s): sftT (gene name)
Systematic name: 6-deoxy-6-sulfo-D-fructose:D-glyceraldehyde-3-phosphate glyceronetransferase
Comments: The enzyme, characterized from the bacterium Bacillus aryabhattai SOS1, is involved in a degradation pathway for 6-sulfo-D-quinovose. The enzyme can also use D-erythrose 4-phosphate as the acceptor, forming D-sedoheptulose 7-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Frommeyer, B., Fiedler, A.W., Oehler, S.R., Hanson, B.T., Loy, A., Franchini, P., Spiteller, D. and Schleheck, D. Environmental and intestinal phylum Firmicutes bacteria metabolize the plant sugar sulfoquinovose via a 6-deoxy-6-sulfofructose transaldolase pathway. iScience 23:101510 (2020). [DOI] [PMID: 32919372]
[EC 2.2.1.14 created 2021]
 
 
EC 3.2.1.199     
Accepted name: sulfoquinovosidase
Reaction: a 6-sulfo-α-D-quinovosyl diacylglycerol + H2O = 6-sulfo-α-D-quinovose + a 1,2-diacylglycerol
Glossary: quinovose = 6-deoxy-D-glucopyranose
Other name(s): yihQ (gene name); 6-sulfo-α-D-quinovosyl diacylglycerol 6-sulfo-D-quinovohydrolase
Systematic name: 6-sulfo-α-D-quinovosyl diacylglycerol 6-sulfo-D-quinovohydrolase (configuration-retaining)
Comments: The enzyme, characterized from the bacteria Escherichia coli and Pseudomonas putida, hydrolyses terminal non-reducing α-sulfoquinovoside residues in α-sulfoquinovosyl diacylglycerides and α-sulfoquinovosyl glycerol using a retaining mechanism. The enzyme belongs to the glycosyl hydrolase GH31 family.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shibuya, I. and Benson, A. A. Hydrolysis of α-sulphoquinovosides by β-galactosidase. Nature 192 (1961) 1186–1187. [DOI]
2.  Speciale, G., Jin, Y., Davies, G.J., Williams, S.J. and Goddard-Borger, E.D. YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat. Chem. Biol. 12 (2016) 215–217. [DOI] [PMID: 26878550]
[EC 3.2.1.199 created 2016]
 
 
EC 4.3.1.30     
Accepted name: dTDP-4-amino-4,6-dideoxy-D-glucose ammonia-lyase
Reaction: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose + S-adenosyl-L-methionine + reduced acceptor = dTDP-3-dehydro-4,6-dideoxy-α-D-glucopyranose + NH3 + L-methionine + 5′-deoxyadenosine + acceptor
For diagram of dTDP-D-desosamine biosynthesis, click here
Other name(s): desII (gene name); eryCV (gene name); MegCV
Systematic name: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose ammonia lyase (dTDP-3-dehydro-4,6-dideoxy-α-D-glucopyranose-forming)
Comments: The enzyme, which is a member of the ’AdoMet radical’ (radical SAM) family, is involved in biosynthesis of TDP-α-D-desosamine. The reaction starts by the transfer of an electron from the reduced form of the enzyme’s [4Fe-4S] cluster to S-adenosyl-L-methionine, spliting it into methionine and the radical 5-deoxyadenosin-5′-yl, which attacks the sugar substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Szu, P.H., Ruszczycky, M.W., Choi, S.H., Yan, F. and Liu, H.W. Characterization and mechanistic studies of DesII: a radical S-adenosyl-L-methionine enzyme involved in the biosynthesis of TDP-D-desosamine. J. Am. Chem. Soc. 131 (2009) 14030–14042. [DOI] [PMID: 19746907]
2.  Ruszczycky, M.W., Choi, S.H. and Liu, H.W. Stoichiometry of the redox neutral deamination and oxidative dehydrogenation reactions catalyzed by the radical SAM enzyme DesII. J. Am. Chem. Soc. 132 (2010) 2359–2369. [DOI] [PMID: 20121093]
3.  Ruszczycky, M.W., Choi, S.H., Mansoorabadi, S.O. and Liu, H.W. Mechanistic studies of the radical S-adenosyl-L-methionine enzyme DesII: EPR characterization of a radical intermediate generated during its catalyzed dehydrogenation of TDP-D-quinovose. J. Am. Chem. Soc. 133 (2011) 7292–7295. [DOI] [PMID: 21513273]
[EC 4.3.1.30 created 2011]
 
 
EC 5.1.3.43     
Accepted name: sulfoquinovose mutarotase
Reaction: 6-sulfo-α-D-quinovose = 6-sulfo-β-D-quinovose
Systematic name: 6-sulfo-D-quinovose 1-epimerase
Comments: The enzyme is found in bacteria that possess sulfoglycolytic pathways. The enzyme can also act on other aldohexoses such as D-galactose, D-glucose, D-glucose-6-phosphate, and D-glucuronate, but with lower efficiency. Does not act on D-mannose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Abayakoon, P., Lingford, J.P., Jin, Y., Bengt, C., Davies, G.J., Yao, S., Goddard-Borger, E.D. and Williams, S.J. Discovery and characterization of a sulfoquinovose mutarotase using kinetic analysis at equilibrium by exchange spectroscopy. Biochem. J. 475 (2018) 1371–1383. [PMID: 29535276]
[EC 5.1.3.43 created 2019]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald