The Enzyme Database

Your query returned 7 entries.    printer_iconPrintable version



EC 2.4.1.130      
Transferred entry: dolichyl-phosphate-mannose—glycolipid α-mannosyltransferase. Now covered by EC 2.4.1.258 (Dol-P-Man:Man5GlcNAc2-PP-Dol α-1,3-mannosyltransferase), EC 2.4.1.259 (Dol-P-Man:Man6GlcNAc2-PP-Dol α-1,2-mannosyltransferase), EC 2.4.1.260 (Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase) and EC 2.4.1.261 (Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase).
[EC 2.4.1.130 created 1984, deleted 2011]
 
 
EC 2.4.1.258     
Accepted name: dolichyl-P-Man:Man5GlcNAc2-PP-dolichol α-1,3-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): Man5GlcNAc2-PP-Dol mannosyltransferase; ALG3; dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase; Not56-like protein; Alg3 α-1,3-mannosyl transferase; Dol-P-Man:Man5GlcNAc2-PP-Dol α-1,3-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,3-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 3-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-dolichol to Man9Glc-NAc2-PP-dolichol on the lumenal side use dolichyl β-D-mannosyl phosphate. The first step of this assembly pathway on the luminal side of the endoplasmic reticulum is catalysed by ALG3.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sharma, C.B., Knauer, R. and Lehle, L. Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. Biol. Chem. 382 (2001) 321–328. [DOI] [PMID: 11308030]
2.  Cipollo, J.F. and Trimble, R.B. The accumulation of Man(6)GlcNAc(2)-PP-dolichol in the Saccharomyces cerevisiae Δalg9 mutant reveals a regulatory role for the Alg3p α1,3-Man middle-arm addition in downstream oligosaccharide-lipid and glycoprotein glycan processing. J. Biol. Chem. 275 (2000) 4267–4277. [DOI] [PMID: 10660594]
[EC 2.4.1.258 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.258, modified 2012]
 
 
EC 2.4.1.259     
Accepted name: dolichyl-P-Man:Man6GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase; Dol-P-Man:Man6GlcNAc2-PP-Dol α-1,2-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,2-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues - the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G. and Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (2009) 910–917. [DOI] [PMID: 19451548]
2.  Cipollo, J.F. and Trimble, R.B. The accumulation of Man(6)GlcNAc(2)-PP-dolichol in the Saccharomyces cerevisiae Δalg9 mutant reveals a regulatory role for the Alg3p α1,3-Man middle-arm addition in downstream oligosaccharide-lipid and glycoprotein glycan processing. J. Biol. Chem. 275 (2000) 4267–4277. [DOI] [PMID: 10660594]
3.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
[EC 2.4.1.259 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.259, modified 2012]
 
 
EC 2.4.1.260     
Accepted name: dolichyl-P-Man:Man7GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-α-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG12; ALG12 mannosyltransferase; ALG12 α1,6mannosyltransferase; dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase; dolichyl-P-Man:Man7GlcNAc2-PP-dolichyl α6-mannosyltransferase; EBS4; Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,6-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 6-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
2.  Hong, Z., Jin, H., Fitchette, A.C., Xia, Y., Monk, A.M., Faye, L. and Li, J. Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell 21 (2009) 3792–3802. [DOI] [PMID: 20023196]
3.  Cipollo, J.F. and Trimble, R.B. The Saccharomyces cerevisiae alg12δ mutant reveals a role for the middle-arm α1,2Man- and upper-arm α1,2Manα1,6Man- residues of Glc3Man9GlcNAc2-PP-Dol in regulating glycoprotein glycan processing in the endoplasmic reticulum and Golgi apparatus. Glycobiology 12 (2002) 749–762. [PMID: 12460943]
4.  Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M. and Hennet, T. ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum. Mol. Genet. 11 (2002) 2331–2339. [DOI] [PMID: 12217961]
[EC 2.4.1.260 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.160, modified 2012]
 
 
EC 2.4.1.261     
Accepted name: dolichyl-P-Man:Man8GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase; Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues: the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G. and Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (2009) 910–917. [DOI] [PMID: 19451548]
2.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
[EC 2.4.1.261 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.261, modified 2012]
 
 
EC 2.4.99.18     
Accepted name: dolichyl-diphosphooligosaccharide—protein glycotransferase
Reaction: dolichyl diphosphooligosaccharide + [protein]-L-asparagine = dolichyl diphosphate + a glycoprotein with the oligosaccharide chain attached by N-β-D-glycosyl linkage to a protein L-asparagine
For diagram of glycoprotein biosynthesis, click here
Other name(s): dolichyldiphosphooligosaccharide-protein glycosyltransferase; asparagine N-glycosyltransferase; dolichyldiphosphooligosaccharide-protein oligosaccharyltransferase; dolichylpyrophosphodiacetylchitobiose-protein glycosyltransferase; oligomannosyltransferase; oligosaccharide transferase; dolichyldiphosphoryloligosaccharide-protein oligosaccharyltransferase; dolichyl-diphosphooligosaccharide:protein-L-asparagine oligopolysaccharidotransferase; STT3
Systematic name: dolichyl-diphosphooligosaccharide:protein-L-asparagine N-β-D-oligopolysaccharidotransferase
Comments: Occurs in eukaryotes that form a glycoprotein by the transfer of a glucosyl-mannosyl-glucosamine polysaccharide to the side-chain of an L-asparagine residue in the sequence -Asn-Xaa-Ser- or -Asn-Xaa-Thr- (Xaa not Pro) in nascent polypeptide chains. The basic oligosaccharide is the tetradecasaccharide Glc3Man9GlcNAc2 (for diagram click here). However, smaller oligosaccharides derived from it and oligosaccharides with additional monosaccharide units attached may be involved. See ref [2] for a review of N-glycoproteins in eukaryotes. Man3GlcNAc2 seems to be common for all of the oligosaccharides involved with the terminal N-acetylglucosamine linked to the protein L-asparagine. Occurs on the cytosolic face of the endoplasmic reticulum. The dolichol involved normally has 14-21 isoprenoid units with two trans double-bonds at the ω end, and the rest of the double-bonds in cis form.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 75302-32-8
References:
1.  Das, R.C. and Heath, E.C. Dolichyldiphosphoryloligosaccharide-protein oligosaccharyltransferase; solubilization, purification, and properties. Proc. Natl. Acad. Sci. USA 77 (1980) 3811–3815. [DOI] [PMID: 6933437]
2.  Song, W., Henquet, M.G., Mentink, R.A., van Dijk, A.J., Cordewener, J.H., Bosch, D., America, A.H. and van der Krol, A.R. N-glycoproteomics in plants: perspectives and challenges. J Proteomics 74 (2011) 1463–1474. [DOI] [PMID: 21605711]
[EC 2.4.99.18 created 1984 as EC 2.4.1.119, transferred 2012 to EC 2.4.99.18]
 
 
EC 3.2.1.106     
Accepted name: mannosyl-oligosaccharide glucosidase
Reaction: Glc3Man9GlcNAc2-[protein] + H2O = Glc2Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc3Man9GlcNAc2 = [α-D-Glc-(1→2)-α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Glc2Man9GlcNAc2-[protein] = [α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Other name(s): Glc3Man9NAc2 oligosaccharide glucosidase; trimming glucosidase I; CWH41 (gene name); MOGS (gene name); mannosyl-oligosaccharide glucohydrolase
Systematic name: Glc3Man9GlcNAc2-[protein] glucohydrolase (configuration-inverting)
Comments: This enzyme catalyses the first step in the processing of the N-glycan tetradecasaccharide precursor Glc3Man9GlcNAc2, which takes place in the endoplasmic reticulum, by removing the distal α-1,2-linked glucose residue. This and subsequent processing steps are required before complex N-glycans can be synthesized.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 78413-07-7
References:
1.  Elting, J.J., Chen, W.W. and Lennarz, J. Characterization of a glucosidase involved in an initial step in the processing of oligosaccharide chains. J. Biol. Chem. 255 (1980) 2325–2331. [PMID: 7358674]
2.  Grinna, L.S. and Robbins, P.W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J. Biol. Chem. 254 (1979) 8814–8818. [PMID: 479161]
3.  Kilker, R.D., Saunier, B., Tkacz, J.S. and Herscovics, A. Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J. Biol. Chem. 256 (1981) 5299–5603. [PMID: 7014569]
4.  Grinna, L.S. and Robbins, P.W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J. Biol. Chem. 255 (1980) 2255–2258. [PMID: 7358666]
5.  Mark, M.J. and Kornfeld, S. Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. Arch. Biochem. Biophys. 199 (1980) 249–258. [DOI] [PMID: 7356331]
[EC 3.2.1.106 created 1984, modified 2018]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald