The Enzyme Database

Your query returned 31 entries.    printer_iconPrintable version



EC 1.1.1.22     
Accepted name: UDP-glucose 6-dehydrogenase
Reaction: UDP-α-D-glucose + 2 NAD+ + H2O = UDP-α-D-glucuronate + 2 NADH + 2 H+
For diagram of the biosynthesis of UDP-α-D-glucose, UDP-α-D-galactose and UDP-α-D-glucuronate, click here
Other name(s): UDP-glucose dehydrogenase; uridine diphosphoglucose dehydrogenase; UDPG dehydrogenase; UDPG:NAD oxidoreductase; UDP-α-D-glucose:NAD oxidoreductase; UDP-glucose:NAD+ oxidoreductase; uridine diphosphate glucose dehydrogenase; UDP-D-glucose dehydrogenase; uridine diphosphate D-glucose dehydrogenase
Systematic name: UDP-α-D-glucose:NAD+ 6-oxidoreductase
Comments: Also acts on UDP-α-D-2-deoxyglucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-26-6
References:
1.  Druzhinina, T.N., Kusov, Y.Y., Shibaev, V.N., Kochetkov, N.K., Biely, P., Kucar, S. and Bauer, S. Uridine diphosphate 2-deoxyglucose. Chemical synthesis, enzymic oxidation and epimerization. Biochim. Biophys. Acta 381 (1975) 301–307. [DOI] [PMID: 1091296]
2.  Maxwell, E.S., Kalckar, H.M. and Strominger, J.L. Some properties of uridine diphosphoglucose dehydrogenase. Arch. Biochem. Biophys. 65 (1956) 2–10. [DOI] [PMID: 13373402]
3.  Strominger, J.L. and Mapson, L.W. Uridine diphosphoglucose dehydrogenase of pea seedlings. Biochem. J. 66 (1957) 567–572. [PMID: 13459898]
4.  Strominger, J.L., Maxwell, E.S., Axelrod, J. and Kalckar, H.M. Enzymatic formation of uridine diphosphogluconic acid. J. Biol. Chem. 224 (1957) 79–90. [PMID: 13398389]
[EC 1.1.1.22 created 1961]
 
 
EC 2.4.1.135     
Accepted name: galactosylgalactosylxylosylprotein 3-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + [protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of heparan and chondroitin biosynthesis (early stages), click here
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): glucuronosyltransferase I; uridine diphosphate glucuronic acid:acceptor glucuronosyltransferase; UDP-glucuronate:3-β-D-galactosyl-4-β-D-galactosyl-O-β-D-xylosyl-protein D-glucuronosyltransferase; UDP-glucuronate:3-β-D-galactosyl-4-β-D-galactosyl-O-β-D-xylosylprotein D-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:[protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine D-glucuronosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 227184-75-0
References:
1.  Helting, J. and Roden, L. Biosynthesis of chondroitin sulfate. II. Glucuronosyl transfer in the formation of the carbohydrate-protein linkage region. J. Biol. Chem. 244 (1969) 2799–2805. [PMID: 5770003]
2.  Helting, T. Biosynthesis of heparin. Solubilization and partial purification of uridine diphosphate glucuronic acid: acceptor glucuronosyltransferase from mouse mastocytoma. J. Biol. Chem. 247 (1972) 4327–4332. [PMID: 4260846]
3.  Kitagawa, H., Tone, Y., Tamura, J., Neumann, K.W., Ogawa, T., Oka, S., Kawasaki, T. and Sugahara, K. Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 273 (1998) 6615–6618. [DOI] [PMID: 9506957]
[EC 2.4.1.135 created 1984, modified 2002, modified 2016]
 
 
EC 2.4.1.174     
Accepted name: glucuronylgalactosylproteoglycan 4-β-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of chondroitin biosynthesis (later stages), click here
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): N-acetylgalactosaminyltransferase I; glucuronylgalactosylproteoglycan β-1,4-N-acetylgalactosaminyltransferase; uridine diphosphoacetylgalactosamine-chondroitin acetylgalactosaminyltransferase I; UDP-N-acetyl-D-galactosamine:D-glucuronyl-1,3-β-D-galactosyl-proteoglycan β-1,4-N-acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:D-glucuronyl-(1→3)-β-D-galactosyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-D-galactosamine:[protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 4-β-N-acetylgalactosaminyltransferase (configuration-inverting)
Comments: Requires Mn2+. Involved in the biosynthesis of chondroitin sulfate. Key enzyme activity for the initiation of chondroitin and dermatan sulfates, transferring GalNAc to the GlcA-Gal-Gal-Xyl-Ser core.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 96189-39-8
References:
1.  Rohrmann, K., Niemann, R. and Buddecke, E. Two N-acetylgalactosaminyltransferases are involved in the biosynthesis of chondroitin sulfate. Eur. J. Biochem. 148 (1985) 463–469. [DOI] [PMID: 3922754]
2.  Uyama, T., Kitagawa, H., Tamura, J.-i. and Sugahara, K. Molecular cloning and expression of human chondroitin N-acetylgalactosaminyltransferase: the key enzyme for chain initiation and elongation of chondroitin/dermatan sulfate on the protein linkage region tetrasaccharide shared by heparin/heparan sulfate. J. Biol. Chem. 277 (2002) 8841–8846. [DOI] [PMID: 11788602]
[EC 2.4.1.174 created 1989, modified 2002]
 
 
EC 2.4.1.175     
Accepted name: glucuronosyl-N-acetylgalactosaminyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase
Reaction: (1) UDP-N-acetyl-α-D-galactosamine + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
(2) UDP-N-acetyl-α-D-galactosamine + [protein]-3-O-(β-D-GlcA-(1→3)-[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-([β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n+1-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of chondroitin biosynthesis (later stages), click here
Other name(s): N-acetylgalactosaminyltransferase II; UDP-N-acetyl-D-galactosamine:D-glucuronyl-N-acetyl-1,3-β-D-galactosaminylproteoglycan β-1,4-N-acetylgalactosaminyltransferase; chondroitin synthase; glucuronyl-N-acetylgalactosaminylproteoglycan β-1,4-N-acetylgalactosaminyltransferase; uridine diphosphoacetylgalactosamine-chondroitin acetylgalactosaminyltransferase II; UDP-N-acetyl-D-galactosamine:β-D-glucuronosyl-(1→3)-N-acetyl-β-D-galactosaminyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase; UDP-N-acetyl-α-D-galactosamine:β-D-glucuronosyl-(1→3)-N-acetyl-β-D-galactosaminyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:[protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 4-β-N-acetylgalactosaminyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of chondroitin sulfate. The human form of this enzyme is a bifunctional glycosyltransferase, which also has the 3-β-glucuronosyltransferase (EC 2.4.1.226, N-acetylgalactosaminyl-proteoglycan 3-β-glucuronosyltransferase) activity required for the synthesis of the chondroitin sulfate disaccharide repeats. Similar chondroitin synthase ’co-polymerases’ can be found in Pasteurella multocida and Escherichia coli.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 96189-40-1
References:
1.  Rohrmann, K., Niemann, R. and Buddecke, E. Two N-acetylgalactosaminyltransferases are involved in the biosynthesis of chondroitin sulfate. Eur. J. Biochem. 148 (1985) 463–469. [DOI] [PMID: 3922754]
2.  Kitagawa, H., Uyama, T. and Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276 (2001) 38721–38726. [DOI] [PMID: 11514575]
3.  DeAngelis, P.L. and Padgett-McCue, A.J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J. Biol. Chem. 275 (2000) 24124–24129. [DOI] [PMID: 10818104]
4.  Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H. and Kimata, K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277 (2002) 21567–21575. [DOI] [PMID: 11943778]
[EC 2.4.1.175 created 1989, modified 2002]
 
 
EC 2.4.1.212     
Accepted name: hyaluronan synthase
Reaction: (1) UDP-N-acetyl-α-D-glucosamine + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] = UDP + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan]
(2) UDP-α-D-glucuronate + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan] = UDP + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan]
For diagram of reaction, click here
Glossary: GlcA = glucuronic acid
Other name(s): spHAS; seHAS; Alternating UDP-α-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase
Systematic name: Alternating UDP-N-acetyl-α-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme from Streptococcus Group A and Group C requires Mg2+. The enzyme adds GlcNAc to nascent hyaluronan when the non-reducing end is GlcA, but it adds GlcA when the non-reducing end is GlcNAc [3]. The enzyme is highly specific for UDP-GlcNAc and UDP-GlcA; no copolymerization is observed if either is replaced by UDP-Glc, UDP-Gal, UDP-GalNAc or UDP-GalA. Similar enzymes have been found in a variety of organisms.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 39346-43-5
References:
1.  DeAngelis, P.L., Papaconstantinou, J. and Weigel, P.H. Molecular cloning, identification and sequence of the hyaluronan synthase gene from Group A Streptococcus pyogenes. J. Biol. Chem. 268 (1993) 19181–19184. [PMID: 8366070]
2.  Jing, W. and DeAngelis, P.L. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology 10 (2000) 883–889. [DOI] [PMID: 10988250]
3.  DeAngelis, P.L. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J. Biol. Chem. 274 (1999) 26557–26562. [DOI] [PMID: 10473619]
4.  Tlapak-Simmons, V.L., Baron, C.A. and Weigel, P.H. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry 43 (2004) 9234–9242. [DOI] [PMID: 15248781]
[EC 2.4.1.212 created 2001, modified 2007]
 
 
EC 2.4.1.223     
Accepted name: glucuronosyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(α-D-GlcNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of heparan biosynthesis (later stages), click here
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): α-N-acetylglucosaminyltransferase I; α1,4-N-acetylglucosaminyltransferase; glucuronosylgalactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl-proteoglycan 4IV-α-N-acetyl-D-glucosaminyltransferase; glucuronyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:[protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 4IV-α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Comments: Enzyme involved in the initiation of heparin and heparan sulfate synthesis, transferring GlcNAc to the (GlcA-Gal-Gal-Xyl-)Ser core. Apparently products of both the human EXTL2 and EXTL3 genes can catalyse this reaction. In Caenorhabditis elegans, the product of the rib-2 gene displays this activity as well as that of EC 2.4.1.224, glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase. For explanation of the use of a superscript in the systematic name, see 2-Carb-37.2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 179241-74-8
References:
1.  Kitagawa, H., Shimakawa, H. and Sugahara, K. The tumor suppressor EXT-like gene EXTL2 encodes an α1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274 (1999) 13933–13937. [DOI] [PMID: 10318803]
2.  Kitagawa, H., Egusa, N., Tamura, J.I., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel α1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J. Biol. Chem. 276 (2001) 4834–4838. [DOI] [PMID: 11121397]
[EC 2.4.1.223 created 2002, modified 2016]
 
 
EC 2.4.1.226     
Accepted name: N-acetylgalactosaminyl-proteoglycan 3-β-glucuronosyltransferase
Reaction: (1) UDP-α-D-glucuronate + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
(2) UDP-α-D-glucuronate + [protein]-3-O-([β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of chondroitin biosynthesis (later stages), click here
Other name(s): chondroitin glucuronyltransferase II; α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase; UDP-α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:[protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 3-β-glucuronosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of chondroitin and dermatan sulfate. The human chondroitin synthetase is a bifunctional glycosyltransferase, which has the 3-β-glucuronosyltransferase and 4-β-N-acetylgalactosaminyltransferase (EC 2.4.1.175) activities required for the synthesis of the chondroitin sulfate disaccharide repeats. Similar chondroitin synthase ’co-polymerases’ can be found in Pasteurella multocida and Escherichia coli. There is also another human protein with apparently only the 3-β-glucuronosyltransferase activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 269077-98-7
References:
1.  Kitagawa, H., Uyama, T. and Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276 (2001) 38721–38726. [DOI] [PMID: 11514575]
2.  DeAngelis, P.L. and Padgett-McCue, A.J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J. Biol. Chem. 275 (2000) 24124–24129. [DOI] [PMID: 10818104]
3.  Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H. and Kimata, K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277 (2002) 21567–21575. [DOI] [PMID: 11943778]
4.  Gotoh, M., Yada, T., Sato, T., Akashima, T., Iwasaki, H., Mochizuki, H., Inaba, N., Togayachi, A., Kudo, T., Watanabe, H., Kimata, K. and Narimatsu, H. Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase which transfers glucuronic acid to N-acetylgalactosamine. J. Biol. Chem. 277 (2002) 38179–38188. [DOI] [PMID: 12145278]
[EC 2.4.1.226 created 2002, modified 2018]
 
 
EC 2.4.1.251     
Accepted name: GlcA-β-(1→2)-D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol 4-β-mannosyltransferase
Reaction: GDP-mannose + GlcA-β-(1→2)-D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol = GDP + D-Man-β-(1→4)- GlcA-β-(1→2)-D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol
For diagram of xanthan biosynthesis, click here
Other name(s): GumI
Systematic name: GDP-mannose:GlcA-β-(1→2)-D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol 4-β-mannosyltransferase
Comments: The enzyme is involved in the biosynthesis of the exopolysaccharide xanthan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A. and Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180 (1998) 1607–1617. [PMID: 9537354]
2.  Ielpi, L., Couso, R.O. and Dankert, M.A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175 (1993) 2490–2500. [DOI] [PMID: 7683019]
3.  Kim, S.Y., Kim, J.G., Lee, B.M. and Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 31 (2009) 265–270. [DOI] [PMID: 18854951]
[EC 2.4.1.251 created 2011]
 
 
EC 2.4.1.264     
Accepted name: D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-GlcA-(1→2)-α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol
For diagram of xanthan biosynthesis, click here
Other name(s): GumK; UDP-glucuronate:D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronyltransferase; D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronyltransferase
Systematic name: UDP-α-D-glucuronate:α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme is involved in the biosynthesis of the exopolysaccharides xanthan (in the bacterium Xanthomonas campestris) and acetan (in the bacterium Gluconacetobacter xylinus).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A. and Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180 (1998) 1607–1617. [PMID: 9537354]
2.  Ielpi, L., Couso, R.O. and Dankert, M.A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175 (1993) 2490–2500. [DOI] [PMID: 7683019]
3.  Kim, S.Y., Kim, J.G., Lee, B.M. and Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 31 (2009) 265–270. [DOI] [PMID: 18854951]
4.  Barreras, M., Bianchet, M.A. and Ielpi, L. Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 (2006) 880–883. [DOI] [PMID: 16946469]
5.  Barreras, M., Salinas, S.R., Abdian, P.L., Kampel, M.A. and Ielpi, L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J. Biol. Chem. 283 (2008) 25027–25035. [DOI] [PMID: 18596046]
6.  Vojnov, A.A., Bassi, D.E., Daniels, M.J. and Dankert, M.A. Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonas campestris. Carbohydr. Res. 337 (2002) 315–326. [DOI] [PMID: 11841812]
7.  Barreras, M., Abdian, P.L. and Ielpi, L. Functional characterization of GumK, a membrane-associated β-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Glycobiology 14 (2004) 233–241. [DOI] [PMID: 14736729]
[EC 2.4.1.264 created 2011, modified 2016]
 
 
EC 2.5.1.95     
Accepted name: xanthan ketal pyruvate transferase
Reaction: phosphoenolpyruvate + D-Man-β-(1→4)-D-GlcA-β-(1→2)-D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol = 4,6-CH3(COO-)C-D-Man-β-(1→4)-D-GlcA-β-(1→2)-D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol + phosphate
For diagram of xanthan biosynthesis, click here
Other name(s): KPT
Systematic name: phosphoenolpyruvate:D-Man-β-(1→4)-GlcA-β-(1→2)-D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol 4,6-O-(1-carboxyethan-1,1-diyl)transferase
Comments: Involved in the biosynthesis of the polysaccharide xanthan. 30-40% of the terminal mannose residues of xanthan have a 4,6-O-(1-carboxyethan-1,1-diyl) ketal group. It also acts on the 6-O-acetyl derivative of the inner mannose unit.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Marzocca, M.P., Harding, N.E., Petroni, E.A., Cleary, J.M. and Ielpi, L. Location and cloning of the ketal pyruvate transferase gene of Xanthomonas campestris. J. Bacteriol. 173 (1991) 7519–7524. [DOI] [PMID: 1657892]
[EC 2.5.1.95 created 2011, modified 2012]
 
 
EC 2.5.1.98     
Accepted name: Rhizobium leguminosarum exopolysaccharide glucosyl ketal-pyruvate-transferase
Reaction: phosphoenolpyruvate + [β-D-GlcA-(1→4)-2-O-Ac-β-D-GlcA-(1→4)-β-D-Glc-(1→4)-[3-O-(CH3CH(OH)CH2C(O))-4,6-CH3(COO-)C-β-D-Gal-(1→4)-β-D-Glc-(1→4)-β-D-Glc-(1→4)-β-D-Glc-(1→6)]-2(or 3)-O-Ac-α-D-Glc-(1→6)]n = [β-D-GlcA-(1→4)-2-O-Ac-β-D-GlcA-(1→4)-β-D-Glc-(1→4)-[3-O-(CH3CH(OH)CH2C(O))-4,6-CH3(COO-)C-β-D-Gal-(1→3)-4,6-CH3(COO-)C-β-D-Glc-(1→4)-β-D-Glc-(1→4)-β-D-Glc-(1→6)]-2(or 3)-O-Ac-α-D-Glc-(1→6)]n + phosphate
Other name(s): PssM; phosphoenolpyruvate:[D-GlcA-β-(1→4)-2-O-Ac-D-GlcA-β-(1→4)-D-Glc-β-(1→4)-[3-O-CH3-CH2CH(OH)C(O)-D-Gal-β-(1→4)-D-Glc-β-(1→4)-D-Glc-β-(1→4)-D-Glc-β-(1→6)]-2(or 3)-O-Ac-D-Glc-α-(1→6)]n 4,6-O-(1-carboxyethan-1,1-diyl)transferase
Systematic name: phosphoenolpyruvate:[β-D-GlcA-(1→4)-2-O-Ac-β-D-GlcA-(1→4)-β-D-Glc-(1→4)-[3-O-CH3-CH2CH(OH)C(O)-4,6-CH3(COO-)C-β-D-Gal-(1→4)-β-D-Glc-(1→4)-β-D-Glc-(1→4)-β-D-Glc-(1→6)]-2(or 3)-O-Ac-α-D-Glc-(1→6)]n 4,6-O-(1-carboxyethan-1,1-diyl)transferase
Comments: The enzyme is responsible for pyruvylation of the subterminal glucose in the acidic octasaccharide repeating unit of the exopolysaccharide of Rhizobium leguminosarum (bv. viciae strain VF39) which is necessary to establish nitrogen-fixing symbiosis with Pisum sativum, Vicia faba, and Vicia sativa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ivashina, T.V., Fedorova, E.E., Ashina, N.P., Kalinchuk, N.A., Druzhinina, T.N., Shashkov, A.S., Shibaev, V.N. and Ksenzenko, V.N. Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciaePisum sativum symbiosis. J. Appl. Microbiol. 109 (2010) 731–742. [DOI] [PMID: 20233262]
[EC 2.5.1.98 created 2012, modified 2018]
 
 
EC 2.7.7.9     
Accepted name: UTP—glucose-1-phosphate uridylyltransferase
Reaction: UTP + α-D-glucose 1-phosphate = diphosphate + UDP-glucose
For diagram of the biosynthesis of UDP-glucose, UDP-galactose and UDP-glucuronate, click here
Other name(s): UDP glucose pyrophosphorylase; glucose-1-phosphate uridylyltransferase; UDPG phosphorylase; UDPG pyrophosphorylase; uridine 5′-diphosphoglucose pyrophosphorylase; uridine diphosphoglucose pyrophosphorylase; uridine diphosphate-D-glucose pyrophosphorylase; uridine-diphosphate glucose pyrophosphorylase
Systematic name: UTP:α-D-glucose-1-phosphate uridylyltransferase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-22-6
References:
1.  Kalckar, H.M. The role of phosphoglycosyl compounds in the biosynthesis of nucleosides and nucleotides. Biochim. Biophys. Acta 12 (1953) 250–264. [DOI] [PMID: 13115434]
2.  Kamogawa, A. and Kurahashi, K. Purification and properties of uridinediphosphate glucose pyrophosphorylase from Escherichia coli K12. J. Biochem. (Tokyo) 57 (1965) 758–765. [PMID: 4284510]
3.  Lobelle-Rich, P.A. and Reeves, R.E. Separation and characterization of two UTP-utilizing hexose phosphate uridylyltransferases from Entamoeba histolytica. Mol. Biochem. Parasitol. 7 (1983) 173–182. [DOI] [PMID: 6304512]
4.  Smith, E.E.B. and Mills, G.T. The uridyl transferase of mammary gland. Biochim. Biophys. Acta 18 (1955) 152. [DOI] [PMID: 13260264]
5.  Turnquist, R.L., Gillett, T.A. and Hansen, R.G. Uridine diphosphate glucose pyrophosphorylase. Crystallization and properties of the enzyme from rabbit liver and species comparisons. J. Biol. Chem. 249 (1974) 7695–7700. [PMID: 4436332]
[EC 2.7.7.9 created 1961]
 
 
EC 2.7.7.10     
Accepted name: UTP—hexose-1-phosphate uridylyltransferase
Reaction: UTP + α-D-galactose 1-phosphate = diphosphate + UDP-α-D-galactose
For diagram of the biosynthesis of UDP-glucose, UDP-galactose and UDP-glucuronate, click here
Other name(s): galactose-1-phosphate uridylyltransferase; galactose 1-phosphate uridylyltransferase; α-D-galactose 1-phosphate uridylyltransferase; galactose 1-phosphate uridyltransferase; UDPgalactose pyrophosphorylase; uridine diphosphate galactose pyrophosphorylase; uridine diphosphogalactose pyrophosphorylase
Systematic name: UTP:α-D-hexose-1-phosphate uridylyltransferase
Comments: α-D-Glucose 1-phosphate can also act as acceptor, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9016-11-9
References:
1.  Isselbacher, K.J. A mammalian uridinediphosphate galactose pyrophosphorylase. J. Biol. Chem. 232 (1958) 429–444. [PMID: 13549431]
2.  Kalckar, H.M. The role of phosphoglycosyl compounds in the biosynthesis of nucleosides and nucleotides. Biochim. Biophys. Acta 12 (1953) 250–264. [DOI] [PMID: 13115434]
3.  Lee, L., Kimura, A. and Tochikura, T. Purification and properties of UDP-glucose (UDP-galactose) pyrophosphorylase from Bifidobacterium bifidum. J. Biochem. (Tokyo) 86 (1979) 923–928. [PMID: 500588]
4.  Lobelle-Rich, P.A. and Reeves, R.E. Separation and characterization of two UTP-utilizing hexose phosphate uridylyltransferases from Entamoeba histolytica. Mol. Biochem. Parasitol. 7 (1983) 173–182. [DOI] [PMID: 6304512]
[EC 2.7.7.10 created 1961]
 
 
EC 2.7.7.12     
Accepted name: UDP-glucose—hexose-1-phosphate uridylyltransferase
Reaction: UDP-α-D-glucose + α-D-galactose 1-phosphate = α-D-glucose 1-phosphate + UDP-α-D-galactose
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): uridyl transferase; hexose-1-phosphate uridylyltransferase; uridyltransferase; hexose 1-phosphate uridyltransferase; UDP-glucose:α-D-galactose-1-phosphate uridylyltransferase
Systematic name: UDP-α-D-glucose:α-D-galactose-1-phosphate uridylyltransferase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-21-5
References:
1.  Kalckar, H.M., Braganca, B. and Munch-Petersen, A. Uridyl transferases and the formation of uridinediphosphogalactose. Nature 172 (1953) 1038. [PMID: 13111247]
2.  Kurahashi, K. and Sugimura, A. Purification and properties of galactose 1-phosphate uridyl transferase from Escherichia coli. J. Biol. Chem. 235 (1960) 940–946. [PMID: 14412847]
3.  Mayes, J.S. and Hansen, R.G. Galactose 1-phosphate uridyl transferase. Methods Enzymol. 9 (1966) 708–713.
4.  Saito, S., Ozutsumi, M. and Kurahashi, K. Galactose 1-phosphate uridylyltransferase of Escherichia coli. II. Further purification and characterization. J. Biol. Chem. 242 (1967) 2362–2368. [PMID: 5338129]
5.  Smith, E.E.B. and Mills, G.T. The uridyl transferase of mammary gland. Biochim. Biophys. Acta 18 (1955) 152. [DOI] [PMID: 13260264]
[EC 2.7.7.12 created 1961]
 
 
EC 2.7.7.64     
Accepted name: UTP-monosaccharide-1-phosphate uridylyltransferase
Reaction: UTP + a monosaccharide 1-phosphate = diphosphate + UDP-monosaccharide
Glossary: UDP-Xyl = UDP-α-D-xylose
UDP-L-Ara = UDP-β-L-arabinopyranose
Other name(s): UDP-sugar pyrophosphorylase; PsUSP
Comments: Requires Mg2+ or Mn2+ for maximal activity. The reaction can occur in either direction and it has been postulated that MgUTP and Mg-diphosphate are the actual substrates [1,2]. The enzyme catalyses the formation of UDP-Glc, UDP-Gal, UDP-GlcA, UDP-L-Ara and UDP-Xyl, showing broad substrate specificity towards monosaccharide 1-phosphates. Mannose 1-phosphate, L-Fucose 1-phosphate and glucose 6-phosphate are not substrates and UTP cannot be replaced by other nucleotide triphosphates [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kotake, T., Yamaguchi, D., Ohzono, H., Hojo, S., Kaneko, S., Ishida, H.K. and Tsumuraya, Y. UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J. Biol. Chem. 279 (2004) 45728–45736. [DOI] [PMID: 15326166]
2.  Rudick, V.L. and Weisman, R.A. Uridine diphosphate glucose pyrophosphorylase of Acanthamoeba castellanii. Purification, kinetic, and developmental studies. J. Biol. Chem. 249 (1974) 7832–7840. [PMID: 4430676]
[EC 2.7.7.64 created 2006]
 
 
EC 2.8.2.23     
Accepted name: [heparan sulfate]-glucosamine 3-sulfotransferase 1
Reaction: 3′-phosphoadenylyl sulfate + [heparan sulfate]-glucosamine = adenosine 3′,5′-bisphosphate + [heparan sulfate]-glucosamine 3-sulfate
Glossary: 3′-phosphoadenylyl sulfate = PAPS
Other name(s): heparin-glucosamine 3-O-sulfotransferase; 3′-phosphoadenylyl-sulfate:heparin-glucosamine 3-O-sulfotransferase; glucosaminyl 3-O-sulfotransferase; heparan sulfate D-glucosaminyl 3-O-sulfotransferase; isoform/isozyme 1 (3-OST-1, HS3ST1); 3′-phosphoadenylyl-sulfate:[heparan sulfate]-glucosamine 3-sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:[heparan sulfate]-glucosamine 3-sulfonotransferase
Comments: This enzyme differs from the other [heparan sulfate]-glucosamine 3-sulfotransferases [EC 2.8.2.29 ([heparan sulfate]-glucosamine 3-sulfotransferase 2) and EC 2.8.2.30 ([heparan sulfate]-glucosamine 3-sulfotransferase 3)] by being the most selective for a precursor of the antithrombin-binding site. It has a minimal acceptor sequence of: → GlcNAc6S→ GlcA→ GlcN2S*+/-6S→ IdoA2S→ GlcN2S→ , the asterisk marking the target (symbols as in 2-Carb-38) using +/- to mean the presence or absence of a substituent, and > to separate a predominant structure from a minor one. Thus Glc(N2S > NAc) means a residue of glucosamine where the N carries a sulfo group mainly but occasionally an acetyl group. [1-4]. It can also modify other precursor sequences within heparan sulfate but this action does not create functional antithrombin-binding sites. These precursors are variants of the consensus sequence: → Glc(N2S > NAc)+/-6S→ GlcA→ GlcN2S*+/-6S→ GlcA > IdoA+/-2S→ Glc(N2S/NAc)+/-6S→ [5]. If the heparan sulfate substrate lacks 2-O-sulfation of GlcA residues, then enzyme specificity is expanded to modify selected glucosamine residues preceded by IdoA as well as GlcA [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 183257-54-7
References:
1.  Kusche, M., Backström, G., Riesenfeld, J., Pepitou, M., Choay, J. and Lindahl, U. Biosynthesis of heparin. O-Sulfation of the antithrombin-binding region. J. Biol. Chem. 263 (1988) 15474–15484. [PMID: 3139669]
2.  Shworak, N.W., Fritze, L.M.S., Liu, J., Butler, L.D. and Rosenberg, R.D. Cell-free synthesis of anticoagulant heparan sulfate reveals a limiting activity which modifies a nonlimiting precursor pool. J. Biol. Chem. 271 (1996) 27063–27071. [DOI] [PMID: 8900197]
3.  Liu, J., Shworak, N.W., Fritze, L.M.S., Edelberg, J.M. and Rosenberg, R.D. Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J. Biol. Chem. 271 (1996) 27072–27082. [DOI] [PMID: 8900198]
4.  Shworak, N.W., Liu, J., Fritze, L.M.S., Schwartz, J.J., Zhang, L., Logeart, D. and Rosenberg, R.D. Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J. Biol. Chem. 272 (1997) 28008–28019. [DOI] [PMID: 9346953]
5.  Zhang, L., Yoshida, K., Liu, J. and Rosenberg, R.D. Anticoagulant heparan sulfate precursor structures in F9 embryonal carcinoma cells. J. Biol. Chem. 274 (1999) 5681–5691. [DOI] [PMID: 10026187]
6.  Zhang, L., Lawrence, R., Schwartz, J.J., Bai, X. , Wei., G, Esko, J.D. and Rosenberg, R.D. The effect of precursor structures on the action of glucosaminyl 3-O-sulfotransferase-1 and the biosynthesis of anticoagulant heparan sulfate. J. Biol. Chem. 276 (2001) 28806–28813. [DOI] [PMID: 11375390]
[EC 2.8.2.23 created 1992, modified 2001]
 
 
EC 2.8.2.29     
Accepted name: [heparan sulfate]-glucosamine 3-sulfotransferase 2
Reaction: 3′-phosphoadenylyl sulfate + [heparan sulfate]-glucosamine = adenosine 3′,5′-bisphosphate + [heparan sulfate]-glucosamine 3-sulfate
Glossary: 3′-phosphoadenylyl sulfate = PAPS
heparan sulfate: for definition click here
Other name(s): glucosaminyl 3-O-sulfotransferase; heparan sulfate D-glucosaminyl 3-O-sulfotransferase; isoform/isozyme 2 (3-OST-2, HS3ST2); 3′-phosphoadenylyl-sulfate:[heparan sulfate]-glucosamine 3-sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:[heparan sulfate]-glucosamine 3-sulfonotransferase
Comments: This enzyme sulfates the residues marked with an asterisk in sequences containing at least → IdoA2S→ GlcN*→ or → GlcA2S→ GlcN*→ (symbols as in 2-Carb-38). Preference for GlcN2S vs. unmodified GlcN has not yet been established. Additional structural features are presumably required for substrate recognition, since the 3-O-sulfated residue is of low abundance, whereas the above IdoA-containing sequence is quite abundant. This enzyme differs from the other [heparan sulfate]-glucosamine 3-sulfotransferases by modifying selected glucosamine residues preceded by GlcA2S; EC 2.8.2.23 ([heparan sulfate]-glucosamine 3-sulfotransferase 1) prefers GlcA or IdoA, whereas EC 2.8.2.30 ([heparan sulfate]-glucosamine 3-sulfotransferase 3) prefers IdoA2S.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shworak, N.W., Liu, J., Petros, L.M., Copeland, N.G. , Jenkins N.A. and Rosenberg, R.D. Diversity of the extensive heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST) multigene family. J. Biol. Chem. 274 (1999) 5170–5184. [DOI] [PMID: 9988767]
2.  Liu, J., Shworak, N.W., Sina, P., Schwartz, J.J., Zhang, L., Fritze, L.M.S. and Rosenberg, R.D. Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities. J. Biol. Chem. 274 (1999) 5185–5192. [DOI] [PMID: 9988768]
[EC 2.8.2.29 created 2001]
 
 
EC 2.8.2.30     
Accepted name: [heparan sulfate]-glucosamine 3-sulfotransferase 3
Reaction: 3′-phosphoadenylyl sulfate + [heparan sulfate]-glucosamine = adenosine 3′,5′-bisphosphate + [heparan sulfate]-glucosamine 3-sulfate
Glossary: 3′-phosphoadenylyl sulfate = PAPS
heparan sulfate: for definition click here
Other name(s): 3′-phosphoadenylyl-sulfate:[heparan sulfate]-glucosamine 3-sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:[heparan sulfate]-glucosamine 3-sulfonotransferase
Comments: Two major substrates contain the tetrasaccharides: → undetermined 2-sulfo-uronic acid→ GlcN2S→ IdoA2S→ GlcN*→ and → undetermined 2-sulfo-uronic acid→ GlcN2S→ IdoA2S→ GlcN6S*→ (symbols as in 2-Carb-38) with modification of the N-unsubstituted glucosamine residue (shown with an asterisk) [1,4]. Modification of selected sequences containing N-sulfo-glucosamine residues cannot yet be excluded. The 3-O-sulfated heparan sulfate can be utilized by Herpes simplex virus type 1 as an entry receptor to infect the target cells [2]. There are two isozymes, known as 3-OST-3A and 3-OST-3B, which have identical catalytic domains but are encoded by different mammalian genes [3]. The specificity of this enzyme differs from that of the other [heparan sulfate]-glucosamine 3-sulfotransferases. It is inefficient at modifying precursors of the antithrombin binding site [in contrast to EC 2.8.2.23 ([heparan sulfate]-glucosamine 3-sulfotransferase 1)] and it does not modify glucosamine preceded by GlcA2S [unlike EC 2.8.2.29 ([heparan sulfate]-glucosamine 3-sulfotransferase 2)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Liu, J., Shriver, Z., Blaiklock, P., Yoshida, K., Sasisekharan, R. and Rosenberg, R.D. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase 3A sulfates N-unsubstituted glucosamine. J. Biol. Chem. 274 (1999) 38155–38162. [DOI] [PMID: 10608887]
2.  Shukla, D., Liu, J., Blaiklock, P., Shworak, N.W., Bai, X., Esko, J.D., Cohen, G.H., Eisenberg, R.J., Rosenberg, R.D. and Spear, P.G. A novel role for 3-O-sulfated heparan sulfate in Herpes simplex virus 1 entry. Cell 99 (1999) 13–22. [DOI] [PMID: 10520990]
3.  Shworak, N.W., Liu, J., Petros, L.M., Copeland, N.G. , Jenkins N.A. and Rosenberg, R.D. Diversity of the extensive heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST) multigene family. J. Biol. Chem. 274 (1999) 5170–5184. [DOI] [PMID: 9988767]
4.  Liu, J., Shworak, N.W., Sina, P., Schwartz, J.J., Zhang, L., Fritze, L.M.S. and Rosenberg, R.D. Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities. J. Biol. Chem. 274 (1999) 5185–5192. [DOI] [PMID: 9988768]
[EC 2.8.2.30 created 2001]
 
 
EC 3.2.1.179     
Accepted name: gellan tetrasaccharide unsaturated glucuronosyl hydrolase
Reaction: β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp + H2O = 5-dehydro-4-deoxy-D-glucuronate + β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp
Glossary: 5-dehydro-4-deoxy-D-glucuronate = (4S,5R)-4,5-dihydroxy-2,6-dioxohexanoate
β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GalNAc = 3-(4-deoxy-β-D-gluc-4-enuronosyl)-N-acetyl-D-galactosamine = 3-(4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid)-2-acetamido-2-deoxy-D-galactose
Other name(s): UGL (ambiguous); unsaturated glucuronyl hydrolase (ambiguous); gellan tetrasaccharide unsaturated glucuronyl hydrolase
Systematic name: β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp β-D-4-deoxy-Δ4-GlcAp hydrolase
Comments: The enzyme releases 4-deoxy-4(5)-unsaturated D-glucuronic acid from oligosaccharides produced by polysaccharide lyases, e.g. the tetrasaccharide β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp produced by EC 4.2.2.25, gellan lyase. The enzyme can also hydrolyse unsaturated chondroitin and hyaluronate disaccharides (β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GalNAc, β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GalNAc6S, β-D-4-deoxy-Δ4-GlcAp2S-(1→3)-D-GalNAc, β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GlcNAc), preferring the unsulfated disaccharides to the sulfated disaccharides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Itoh, T., Akao, S., Hashimoto, W., Mikami, B. and Murata, K. Crystal structure of unsaturated glucuronyl hydrolase, responsible for the degradation of glycosaminoglycan, from Bacillus sp. GL1 at 1.8 Å resolution. J. Biol. Chem. 279 (2004) 31804–31812. [DOI] [PMID: 15148314]
2.  Hashimoto, W., Kobayashi, E., Nankai, H., Sato, N., Miya, T., Kawai, S. and Murata, K. Unsaturated glucuronyl hydrolase of Bacillus sp. GL1: novel enzyme prerequisite for metabolism of unsaturated oligosaccharides produced by polysaccharide lyases. Arch. Biochem. Biophys. 368 (1999) 367–374. [DOI] [PMID: 10441389]
3.  Itoh, T., Hashimoto, W., Mikami, B. and Murata, K. Substrate recognition by unsaturated glucuronyl hydrolase from Bacillus sp. GL1. Biochem. Biophys. Res. Commun. 344 (2006) 253–262. [DOI] [PMID: 16630576]
[EC 3.2.1.179 created 2011, modified 2016]
 
 
EC 3.2.1.180     
Accepted name: unsaturated chondroitin disaccharide hydrolase
Reaction: β-D-4-deoxy-Δ4-GlcAp-(1→3)-β-D-GalNAc6S + H2O = 5-dehydro-4-deoxy-D-glucuronate + N-acetyl-β-D-galactosamine-6-O-sulfate
Glossary: 5-dehydro-4-deoxy-D-glucuronate = (4S,5R)-4,5-dihydroxy-2,6-dioxohexanoate
Other name(s): UGL (ambiguous); unsaturated glucuronyl hydrolase (ambiguous)
Systematic name: β-D-4-deoxy-Δ4-GlcAp-(1→3)-β-D-GalNAc6S hydrolase
Comments: The enzyme releases 4-deoxy-4,5-didehydro D-glucuronic acid or 4-deoxy-4,5-didehydro L-iduronic acid from chondroitin disaccharides, hyaluronan disaccharides and heparin disaccharides and cleaves both glycosidic (1→3) and (1→4) bonds. It prefers the sulfated disaccharides to the unsulfated disaccharides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Maruyama, Y., Nakamichi, Y., Itoh, T., Mikami, B., Hashimoto, W. and Murata, K. Substrate specificity of streptococcal unsaturated glucuronyl hydrolases for sulfated glycosaminoglycan. J. Biol. Chem. 284 (2009) 18059–18069. [DOI] [PMID: 19416976]
2.  Nakamichi, Y., Maruyama, Y., Mikami, B., Hashimoto, W. and Murata, K. Structural determinants in streptococcal unsaturated glucuronyl hydrolase for recognition of glycosaminoglycan sulfate groups. J. Biol. Chem. 286 (2011) 6262–6271. [DOI] [PMID: 21147778]
[EC 3.2.1.180 created 2011]
 
 
EC 3.13.1.1     
Accepted name: UDP-sulfoquinovose synthase
Reaction: UDP-α-D-sulfoquinovopyranose + H2O = UDP-α-D-glucose + sulfite
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): sulfite:UDP-glucose sulfotransferase; UDPsulfoquinovose synthase; UDP-6-sulfo-6-deoxyglucose sulfohydrolase
Systematic name: UDP-6-sulfo-6-deoxy-α-D-glucose sulfohydrolase
Comments: Requires NAD+, which appears to oxidize UDP-α-D-glucose to UDP-4-dehydroglucose, which dehydrates to UDP-4-dehydro-6-deoxygluc-5-enose, to which sulfite is added. The reaction is completed when the substrate is rehydrogenated at C-4. The enzyme from Arabidopsis thaliana is specific for UDP-Glc and sulfite.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Essigmann, B., Gler, S., Narang, R.A., Linke, D. and Benning, C. Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95 (1998) 1950–1955. [DOI] [PMID: 9465123]
2.  Essigmann, B., Hespenheide, B.M., Kuhn, L.A. and Benning, C. Prediction of the active-site structure and NAD+ binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch. Biochem. Biophys. 369 (1999) 30–41. [DOI] [PMID: 10462438]
3.  Mulichak, A.M., Theisen, M.J., Essigmann, B., Benning, C. and Garavito, R.M. Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc. Natl. Acad. Sci. USA 96 (1999) 13097–13102. [DOI] [PMID: 10557279]
4.  Sanda, S., Leustek, T., Theisen, M., Garavito, R.M. and Benning, C. Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J. Biol. Chem. 276 (2001) 3941–3946. [DOI] [PMID: 11073956]
[EC 3.13.1.1 created 2001, modified 2010]
 
 
EC 4.2.1.76     
Accepted name: UDP-glucose 4,6-dehydratase
Reaction: UDP-α-D-glucose = UDP-4-dehydro-6-deoxy-α-D-glucose + H2O
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): UDP-D-glucose-4,6-hydrolyase; UDP-D-glucose oxidoreductase; UDP-glucose 4,6-hydro-lyase
Systematic name: UDP-α-D-glucose 4,6-hydro-lyase (UDP-4-dehydro-6-deoxy-α-D-glucose-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 68189-53-7
References:
1.  Kamsteeg, J., van Brederode, J. and van Nigtevecht, G. The formation of UDP-L-rhamnose from UDP-D-glucose by an enzyme preparation of red campion (Silene dioica (L) Clairv) leaves. FEBS Lett. 91 (1978) 281–284. [DOI] [PMID: 680134]
[EC 4.2.1.76 created 1984]
 
 
EC 4.2.2.1     
Accepted name: hyaluronate lyase
Reaction: Cleaves hyaluronate chains at a β-D-GlcNAc-(1→4)-β-D-GlcA bond, ultimately breaking the polysaccharide down to 3-(4-deoxy-β-D-gluc-4-enuronosyl)-N-acetyl-D-glucosamine.
Other name(s): hyaluronidase (ambiguous); glucuronoglycosaminoglycan lyase (ambiguous); spreading factor; mucinase (ambiguous)
Systematic name: hyaluronate lyase
Comments: The enzyme catalyses the degradation of hyaluronan by a β-elimination reaction. Also acts on chondroitin. The product is more systematically known as 3-(4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid)-2-acetamido-2-deoxy-D-glucose
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37259-53-3
References:
1.  Linker, A., Hoffman, P., Meyer, K., Sampson, P. and Korn, E.D. The formation of unsaturated disacharides from mucopoly-saccharides and their cleavage to α-keto acid by bacterial enzymes. J. Biol. Chem. 235 (1960) 3061. [PMID: 13762462]
2.  Meyer, K. and Rapport, M.M. Hyaluronidases. Adv. Enzymol. Relat. Subj. Biochem. 13 (1952) 199–236. [PMID: 14943668]
3.  Moran, F., Nasuno, S. and Starr, M.P. Extracellular and intracellular polygalacturonic acid trans-eliminases of Erwinia carotovora. Arch. Biochem. Biophys. 123 (1968) 298–306. [DOI] [PMID: 5642600]
[EC 4.2.2.1 created 1961 as EC 4.2.99.1, transferred 1972 to EC 4.2.2.1, modified 2001]
 
 
EC 4.2.2.5     
Accepted name: chondroitin AC lyase
Reaction: Eliminative degradation of polysaccharides containing 1,4-β-D-hexosaminyl and 1,3-β-D-glucuronosyl linkages to disaccharides containing 4-deoxy-β-D-gluc-4-enuronosyl groups
Glossary: chondroitin sulfate A = chondroitin 4-sulfate
chondroitin sulfate C = chondroitin 6-sulfate
For the nomenclature of glycoproteins, glycopeptides and peptidoglycans, click here
Other name(s): chondroitinase (ambiguous); chondroitin sulfate lyase; chondroitin AC eliminase; chondroitinase AC; ChnAC
Systematic name: chondroitin AC lyase
Comments: Acts on chondroitin 4-sulfate and chondroitin 6-sulfate, but less well on hyaluronate. In general, chondroitin sulfate (CS) and dermatan sulfate (DS) chains comprise a linkage region, a chain cap and a repeat region. The repeat region of CS is a repeating disaccharide of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) [-4)GlcA(β1-3)GalNAc(β1-]n, which may be O-sulfated on the C-4 and/or C-6 of GalNAc and C-2 of GlcA. GlcA residues of CS may be epimerized to iduronic acid (IdoA) forming the repeating disaccharide [-4)IdoA(α1-3)GalNAc(β1-]n of DS. Both the concentrations and locations of sulfate-ester substituents vary with glucosaminoglycan source [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9047-57-8
References:
1.  Nakada, H.I. and Wolfe, J.B. Studies on the enzyme chondroitinase: product structure and ion effects. Arch. Biochem. Biophys. 94 (1961) 244–251. [DOI] [PMID: 13727579]
2.  Pojasek, K., Shriver, Z., Kiley, P., Venkataraman, G. and Sasisekharan, R. Recombinant expression, purification, and kinetic characterization of chondroitinase AC and chondroitinase B from Flavobacterium heparinum. Biochem. Biophys. Res. Commun. 286 (2001) 343–351. [DOI] [PMID: 11500043]
3.  Fethiere, J., Shilton, B.H., Li, Y., Allaire, M., Laliberte, M., Eggimann, B. and Cygler, M. Crystallization and preliminary analysis of chondroitinase AC from Flavobacterium heparinum. Acta Crystallogr. D Biol. Crystallogr. 54 (1998) 279–280. [PMID: 9761894]
4.  Huckerby, T.N., Nieduszynski, I.A., Giannopoulos, M., Weeks, S.D., Sadler, I.H. and Lauder, R.M. Characterization of oligosaccharides from the chondroitin/dermatan sulfates. 1H-NMR and 13C-NMR studies of reduced trisaccharides and hexasaccharides. FEBS J. 272 (2005) 6276–6286. [DOI] [PMID: 16336265]
[EC 4.2.2.5 created 1972 (EC 4.2.99.6 created 1965, part incorporated 1976)]
 
 
EC 4.2.2.19     
Accepted name: chondroitin B lyase
Reaction: Eliminative cleavage of dermatan sulfate containing (1→4)-β-D-hexosaminyl and (1→3)-β-D-glucurosonyl or (1→3)-α-L-iduronosyl linkages to disaccharides containing 4-deoxy-β-D-gluc-4-enuronosyl groups to yield a 4,5-unsaturated dermatan-sulfate disaccharide (ΔUA-GalNAc-4S).
Glossary: chondroitin sulfate B = dermatan sulfate
For the nomenclature of glycoproteins, glycopeptides and peptidoglycans, click here
Other name(s): chondroitinase B; ChonB; ChnB
Systematic name: chondroitin B lyase
Comments: This is the only lyase that is known to be specific for dermatan sulfate as substrate. The minimum substrate length required for catalysis is a tetrasaccharide [2]. In general, chondroitin sulfate (CS) and dermatan sulfate (DS) chains comprise a linkage region, a chain cap and a repeat region. The repeat region of CS is a repeating disaccharide of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) [-4)GlcA(β1-3)GalNAc(β1-]n, which may be O-sulfated on the C-4 and/or C-6 of GalNAc and C-2 of GlcA. GlcA residues of CS may be epimerized to iduronic acid (IdoA) forming the repeating disaccharide [-4)IdoA(α1-3)GalNAc(β1-]n of DS. Both the concentrations and locations of sulfate-ester substituents vary with glucosaminoglycan source [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52227-83-5
References:
1.  Gu, K., Linhardt, R.J., Laliberte, M., Gu, K. and Zimmermann, J. Purification, characterization and specificity of chondroitin lyases and glycuronidase from Flavobacterium heparinum. Biochem. J. 312 (1995) 569–577. [PMID: 8526872]
2.  Pojasek, K., Raman, R., Kiley, P., Venkataraman, G. and Sasisekharan, R. Biochemical characterization of the chondroitinase B active site. J. Biol. Chem. 277 (2000) 31179–31186. [DOI] [PMID: 12063249]
3.  Pojasek, K., Shriver, Z., Kiley, P., Venkataraman, G. and Sasisekharan, R. Recombinant expression, purification, and kinetic characterization of chondroitinase AC and chondroitinase B from Flavobacterium heparinum. Biochem. Biophys. Res. Commun. 286 (2001) 343–351. [DOI] [PMID: 11500043]
4.  Suzuki, K., Terasaki, Y. and Uyeda, M. Inhibition of hyaluronidases and chondroitinases by fatty acids. J. Enzyme 17 (2002) 183–186. [DOI] [PMID: 12443044]
5.  Ototani, N. and Yosizawa, Z. Purification of chondroitinase B and chondroitinase C using glycosaminoglycan-bound AH-Sepharose 4B. Carbohydr. Res. 70 (1979) 295–306. [DOI] [PMID: 427837]
6.  Tkalec, A.L., Fink, D., Blain, F., Zhang-Sun, G., Laliberte, M., Bennett, D.C., Gu, K., Zimmermann, J.J. and Su, H. Isolation and expression in Escherichia coli of cslA and cslB, genes coding for the chondroitin sulfate-degrading enzymes chondroitinase AC and chondroitinase B, respectively, from Flavobacterium heparinum. Appl. Environ. Microbiol. 66 (2000) 29–35. [DOI] [PMID: 10618199]
7.  Michel, G., Pojasek, K., Li, Y., Sulea, T., Linhardt, R.J., Raman, R., Prabhakar, V., Sasisekharan, R. and Cygler, M. The structure of chondroitin B lyase complexed with glycosaminoglycan oligosaccharides unravels a calcium-dependent catalytic machinery. J. Biol. Chem. 279 (2004) 32882–32896. [DOI] [PMID: 15155751]
8.  Li, Y., Matte, A., Su, H. and Cygler, M. Crystallization and preliminary X-ray analysis of chondroitinase B from Flavobacterium heparinum. Acta Crystallogr. D Biol. Crystallogr. 55 (1999) 1055–1057. [PMID: 10216304]
9.  Huang, W., Matte, A., Li, Y., Kim, Y.S., Linhardt, R.J., Su, H. and Cygler, M. Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 Å resolution. J. Mol. Biol. 294 (1999) 1257–1269. [DOI] [PMID: 10600383]
10.  Huckerby, T.N., Nieduszynski, I.A., Giannopoulos, M., Weeks, S.D., Sadler, I.H. and Lauder, R.M. Characterization of oligosaccharides from the chondroitin/dermatan sulfates. 1H-NMR and 13C-NMR studies of reduced trisaccharides and hexasaccharides. FEBS J. 272 (2005) 6276–6286. [DOI] [PMID: 16336265]
[EC 4.2.2.19 created 2005]
 
 
EC 4.2.2.20     
Accepted name: chondroitin-sulfate-ABC endolyase
Reaction: Endolytic cleavage of (1→4)-β-galactosaminic bonds between N-acetylgalactosamine and either D-glucuronic acid or L-iduronic acid to produce a mixture of Δ4-unsaturated oligosaccharides of different sizes that are ultimately degraded to Δ4-unsaturated tetra- and disaccharides
For diagram of reaction click here
Glossary: chondroitin sulfate A = chondroitin 4-sulfate
chondroitin sulfate B = dermatan sulfate
chondroitin sulfate C = chondroitin 6-sulfate
For the nomenclature of glycoproteins, glycopeptides and peptidoglycans, click here
Other name(s): chondroitinase (ambiguous); chondroitin ABC eliminase (ambiguous); chondroitinase ABC (ambiguous); chondroitin ABC lyase (ambiguous); chondroitin sulfate ABC lyase (ambiguous); ChS ABC lyase (ambiguous); chondroitin sulfate ABC endoeliminase; chondroitin sulfate ABC endolyase; ChS ABC lyase I
Systematic name: chondroitin-sulfate-ABC endolyase
Comments: This enzyme degrades a variety of glycosaminoglycans of the chondroitin-sulfate- and dermatan-sulfate type. Chondroitin sulfate, chondroitin-sulfate proteoglycan and dermatan sulfate are the best substrates but the enzyme can also act on hyaluronan at a much lower rate. Keratan sulfate, heparan sulfate and heparin are not substrates. In general, chondroitin sulfate (CS) and dermatan sulfate (DS) chains comprise a linkage region, a chain cap and a repeat region. The repeat region of CS is a repeating disaccharide of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) [-4)GlcA(β1-3)GalNAc(β1-]n, which may be O-sulfated on the C-4 and/or C-6 of GalNAc and C-2 of GlcA. GlcA residues of CS may be epimerized to iduronic acid (IdoA) forming the repeating disaccharide [-4)IdoA(α1-3)GalNAc(β1-]n of DS. Both the concentrations and locations of sulfate-ester substituents vary with glucosaminoglycan source [5]. The related enzyme EC 4.2.2.21, chondroitin-sulfate-ABC exolyase, has the same substrate specificity but removes disaccharide residues from the non-reducing ends of both polymeric chondroitin sulfates and their oligosaccharide fragments produced by EC 4.2.2.20 [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-13-9
References:
1.  Yamagata, T., Saito, H., Habuchi, O. and Suzuki, S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243 (1968) 1523–1535. [PMID: 5647268]
2.  Saito, H., Yamagata, T. and Suzuki, S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J. Biol. Chem. 243 (1968) 1536–1542. [PMID: 4231029]
3.  Suzuki, S., Saito, H., Yamagata, T., Anno, K., Seno, N., Kawai, Y. and Furuhashi, T. Formation of three types of disulfated disaccharides from chondroitin sulfates by chondroitinase digestion. J. Biol. Chem. 243 (1968) 1543–1550. [PMID: 5647269]
4.  Hamai, A., Hashimoto, N., Mochizuki, H., Kato, F., Makiguchi, Y., Horie, K. and Suzuki, S. Two distinct chondroitin sulfate ABC lyases. An endoeliminase yielding tetrasaccharides and an exoeliminase preferentially acting on oligosaccharides. J. Biol. Chem. 272 (1997) 9123–9130. [DOI] [PMID: 9083041]
5.  Huckerby, T.N., Nieduszynski, I.A., Giannopoulos, M., Weeks, S.D., Sadler, I.H. and Lauder, R.M. Characterization of oligosaccharides from the chondroitin/dermatan sulfates. 1H-NMR and 13C-NMR studies of reduced trisaccharides and hexasaccharides. FEBS J. 272 (2005) 6276–6286. [DOI] [PMID: 16336265]
[EC 4.2.2.20 created 2006 (EC 4.2.2.4 created 1972, part-incorporated 2006 (EC 4.2.99.6 created 1965, part incorporated 1976))]
 
 
EC 4.2.2.25     
Accepted name: gellan lyase
Reaction: Eliminative cleavage of β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyluronate bonds of gellan backbone releasing tetrasaccharides containing a 4-deoxy-4,5-unsaturated D-glucopyranosyluronic acid at the non-reducing end. The tetrasaccharide produced from deacetylated gellan is β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-β-D-Glcp.
Systematic name: gellan β-D-glucopyranosyl-(1→4)-D-glucopyranosyluronate lyase
Comments: The enzyme is highly specific to gellan, especially deacetylated gellan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hashimoto, W., Maesaka, K., Sato, N., Kimura, S., Yamamoto, K., Kumagai, H. and Murata, K. Microbial system for polysaccharide depolymerization: enzymatic route for gellan depolymerization by Bacillus sp. GL1. Arch. Biochem. Biophys. 339 (1997) 17–23. [DOI] [PMID: 9056228]
2.  Hashimoto, W., Sato, N., Kimura, S. and Murata, K. Polysaccharide lyase: molecular cloning of gellan lyase gene and formation of the lyase from a huge precursor protein in Bacillus sp. GL1. Arch. Biochem. Biophys. 354 (1998) 31–39. [DOI] [PMID: 9633595]
3.  Miyake, O., Kobayashi, E., Nankai, H., Hashimoto, W., Mikami, B. and Murata, K. Posttranslational processing of polysaccharide lyase: maturation route for gellan lyase in Bacillus sp. GL1. Arch. Biochem. Biophys. 422 (2004) 211–220. [DOI] [PMID: 14759609]
[EC 4.2.2.25 created 2011]
 
 
EC 5.1.3.2     
Accepted name: UDP-glucose 4-epimerase
Reaction: UDP-α-D-glucose = UDP-α-D-galactose
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): UDP-galactose 4-epimerase; uridine diphosphoglucose epimerase; galactowaldenase; UDPG-4-epimerase; uridine diphosphate galactose 4-epimerase; uridine diphospho-galactose-4-epimerase; UDP-glucose epimerase; 4-epimerase; uridine diphosphoglucose 4-epimerase; uridine diphosphate glucose 4-epimerase; UDP-D-galactose 4-epimerase
Systematic name: UDP-α-D-glucose 4-epimerase
Comments: Requires NAD+. Also acts on UDP-2-deoxyglucose.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9032-89-7
References:
1.  Leloir, L.F. Enzymic isomerization and related processes. Adv. Enzymol. Relat. Subj. Biochem. 14 (1953) 193–218. [PMID: 13057717]
2.  Maxwell, E.S. and de Robichon-Szulmajster, H. Purification of uridine diphosphate galactose-4-epimerase from yeast and the identification of protein-bound diphosphopyridine nucleotide. J. Biol. Chem. 235 (1960) 308–312.
3.  Wilson, D.B. and Hogness, D.S. The enzymes of the galactose operon in Escherichia coli. I. Purification and characterization of uridine diphosphogalactose 4-epimerase. J. Biol. Chem. 239 (1964) 2469–2481. [PMID: 14235524]
[EC 5.1.3.2 created 1961]
 
 
EC 5.1.3.36     
Accepted name: heparosan-glucuronate 5-epimerase
Reaction: [heparosan]-D-glucuronate = [acharan]-L-iduronate
Glossary: acharan = [GlcNAc-α-(1→4)-IdoA-α-(1→4)]n
heparosan = [GlcNAc-α-(1→4)-GlcA-β-(1→4)]n
Other name(s): HG-5epi
Systematic name: [heparosan]-D-glucuronate 5-epimerase
Comments: The enzyme, characterized from the giant African snail Achatina fulica, participates in the biosynthetic pathway of acharan sulfate. Unlike EC 5.1.3.17, heparosan-N-sulfate-glucuronate 5-epimerase, it shows no activity with D-glucuronate residues in heparosan-N-sulfate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mochizuki, H., Yamagishi, K., Suzuki, K., Kim, Y.S. and Kimata, K. Heparosan-glucuronate 5-epimerase: Molecular cloning and characterization of a novel enzyme. Glycobiology 25 (2015) 735–744. [DOI] [PMID: 25677302]
[EC 5.1.3.36 created 2015]
 
 
EC 5.4.2.2     
Accepted name: phosphoglucomutase (α-D-glucose-1,6-bisphosphate-dependent)
Reaction: α-D-glucose 1-phosphate = D-glucose 6-phosphate
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): glucose phosphomutase (ambiguous); phosphoglucose mutase (ambiguous)
Systematic name: α-D-glucose 1,6-phosphomutase
Comments: Maximum activity is only obtained in the presence of α-D-glucose 1,6-bisphosphate. This bisphosphate is an intermediate in the reaction, being formed by transfer of a phosphate residue from the enzyme to the substrate, but the dissociation of bisphosphate from the enzyme complex is much slower than the overall isomerization. The enzyme also catalyses (more slowly) the interconversion of 1-phosphate and 6-phosphate isomers of many other α-D-hexoses, and the interconversion of α-D-ribose 1-phosphate and 5-phosphate. cf. EC 5.4.2.5, phosphoglucomutase (glucose-cofactor).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-81-4
References:
1.  Joshi, J.G. and Handler, P. Phosphoglucomutase. I. Purification and properties of phosphoglucomutase from Escherichia coli. J. Biol. Chem. 239 (1964) 2741–2751. [PMID: 14216423]
2.  Najjar, V.A. Phosphoglucomutase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 6, Academic Press, New York, 1962, pp. 161–178.
3.  Ray, W.J. and Roscelli, G.A. A kinetic study of the phosphoglucomutase pathway. J. Biol. Chem. 239 (1964) 1228–1236. [PMID: 14165931]
4.  Ray, W.J., Jr. and Peck, E.J., Jr. Phosphomutases. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 6, 1972, pp. 407–477.
5.  Sutherland, E.W., Cohn, M., Posternak, T. and Cori, C.F. The mechanism of the phosphoglucomutase reaction. J. Biol. Chem. 180 (1949) 1285–1295. [PMID: 18148026]
[EC 5.4.2.2 created 1961 as EC 2.7.5.1, transferred 1984 to EC 5.4.2.2]
 
 
EC 5.4.99.9     
Accepted name: UDP-galactopyranose mutase
Reaction: UDP-α-D-galactopyranose = UDP-α-D-galactofuranose
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): UGM; UDP-D-galactopyranose furanomutase
Systematic name: UDP-α-D-galactopyranose furanomutase
Comments: A flavoenzyme which generates UDP-α-D-glactofuranose required for cell wall formation in bacteria, fungi, and protozoa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 174632-18-9
References:
1.  Trejo, A.G., Chittenden, G.J.F., Buchanan, J.G. and Baddiley, J. Uridine diphosphate α-D-galactofuranose, an intermediate in the biosynthesis of galactofuranosyl residues. Biochem. J. 117 (1970) 637–639. [PMID: 5419754]
2.  Karunan Partha, S., Bonderoff, S.A., van Straaten, K.E. and Sanders, D.A. Expression, purification and preliminary X-ray crystallographic analysis of UDP-galactopyranose mutase from Deinococcus radiodurans. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 (2009) 843–845. [DOI] [PMID: 19652355]
3.  Dhatwalia, R., Singh, H., Oppenheimer, M., Karr, D.B., Nix, J.C., Sobrado, P. and Tanner, J.J. Crystal structures and small-angle x-ray scattering analysis of UDP-galactopyranose mutase from the pathogenic fungus Aspergillus fumigatus. J. Biol. Chem. 287 (2012) 9041–9051. [DOI] [PMID: 22294687]
4.  van Straaten, K.E., Routier, F.H. and Sanders, D.A. Towards the crystal structure elucidation of eukaryotic UDP-galactopyranose mutase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 (2012) 455–459. [DOI] [PMID: 22505419]
[EC 5.4.99.9 created 1984, modified 2012]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald