The Enzyme Database

Your query returned 3 entries.    printer_iconPrintable version



EC 2.1.1.376     
Accepted name: glycine betaine—corrinoid protein Co-methyltransferase
Reaction: glycine betaine + a [Co(I) glycine betaine-specific corrinoid protein] = N,N-dimethylglycine + a [methyl-Co(III) glycine betaine-specific corrinoid protein]
Other name(s): mtgB (gene name); glycine betaine methyltransferase
Systematic name: glycine betaine:[Co(I) glycine betaine-specific corrinoid protein] Co-methyltransferase
Comments: The enzyme, which catalyses the transfer of a methyl group from glycine betaine to a glycine betaine-specific corrinoid protein (MtgC), is involved in methanogenesis from glycine betaine in some methanogenic archaea, and in glycine betaine degradation in some bacteria. Unlike similar enzymes involved in methanogenesis from methylated C1 compounds, this enzyme does not contain the unusual amino acid L-pyrrolysine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ticak, T., Kountz, D.J., Girosky, K.E., Krzycki, J.A. and Ferguson, D.J., Jr. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc. Natl. Acad. Sci. USA 111 (2014) E4668–E4676. [DOI] [PMID: 25313086]
2.  Creighbaum, A.J., Ticak, T., Shinde, S., Wang, X. and Ferguson, D.J., Jr. Examination of the glycine betaine-dependent methylotrophic methanogenesis pathway: insights into anaerobic quaternary amine methylotrophy. Front. Microbiol. 10:2572 (2019). [DOI] [PMID: 31787957]
[EC 2.1.1.376 created 2021]
 
 
EC 6.1.1.26     
Accepted name: pyrrolysine—tRNAPyl ligase
Reaction: ATP + L-pyrrolysine + tRNAPyl = AMP + diphosphate + L-pyrrolysyl-tRNAPyl
Glossary: pyrrolysine = N6-[(2R,3R)-3-methyl-3,4-dihydro-2H-pyrrol-2-ylcarbonyl]-L-lysine
Other name(s): PylS; pyrrolysyl-tRNA synthetase
Systematic name: L-pyrrolysine:tRNAPyl ligase (AMP-forming)
Comments: In organisms such as Methanosarcina barkeri that incorporate the modified amino acid pyrrolysine (Pyl) into certain methylamine methyltransferases, an unusual tRNAPyl, with a CUA anticodon, can be charged directly with pyrrolysine by this class II aminoacyl—tRNA ligase. The enzyme is specific for pyrrolysine as substrate as it cannot be replaced by lysine or any of the other natural amino acids [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Blight, S.K., Larue, R.C., Mahapatra, A., Longstaff, D.G., Chang, E., Zhao, G., Kang, P.T., Green-Church, K.B., Chan, M.K. and Krzycki, J.A. Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431 (2004) 333–335. [DOI] [PMID: 15329732]
2.  Polycarpo, C., Ambrogelly, A., Bérubé, A., Winbush, S.M., McCloskey, J.A., Crain, P.F., Wood, J.L. and Söll, D. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl. Acad. Sci. USA 101 (2004) 12450–12454. [DOI] [PMID: 15314242]
3.  Schimmel, P. and Beebe, K. Molecular biology: genetic code seizes pyrrolysine. Nature 431 (2004) 257–258. [DOI] [PMID: 15372017]
[EC 6.1.1.26 created 2007]
 
 
EC 6.3.2.59     
Accepted name: 3-methyl-D-ornithine—L-lysine ligase
Reaction: ATP + (3R)-3-methyl-D-ornithine + L-lysine = ADP + phosphate + N6-[(3R)-3-methyl-D-ornithinyl]-L-lysine
Glossary: L-pyrrolysine = N6-{[(2R,3R)-3-methyl-3,4-dihydro-2H-pyrrol-2-yl]carbonyl}-L-lysine
Other name(s): N6-[(2R,3R)-3-methylornithyl]-L-lysine synthase; 3-methylornithine—L-lysine ligase; pylC (gene name)
Systematic name: (3R)-3-methyl-D-ornithine:L-lysine γ-ligase (ADP-forming)
Comments: The enzyme participates in the biosynthesis of L-pyrrolysine, a naturally occurring, genetically coded amino acid found in some methanogenic archaea and a few bacterial species. L-pyrrolysine is present in several methyltransferases that are involved in methyl transfer from methylated amine compounds to coenzyme M.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gaston, M.A., Zhang, L., Green-Church, K.B. and Krzycki, J.A. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine. Nature 471 (2011) 647–650. [DOI] [PMID: 21455182]
2.  Cellitti, S.E., Ou, W., Chiu, H.P., Grunewald, J., Jones, D.H., Hao, X., Fan, Q., Quinn, L.L., Ng, K., Anfora, A.T., Lesley, S.A., Uno, T., Brock, A. and Geierstanger, B.H. D-Ornithine coopts pyrrolysine biosynthesis to make and insert pyrroline-carboxy-lysine. Nat. Chem. Biol. 7 (2011) 528–530. [DOI] [PMID: 21525873]
3.  Quitterer, F., List, A., Beck, P., Bacher, A. and Groll, M. Biosynthesis of the 22nd genetically encoded amino acid pyrrolysine: structure and reaction mechanism of PylC at 1.5A resolution. J. Mol. Biol. 424 (2012) 270–282. [DOI] [PMID: 22985965]
[EC 6.3.2.59 created 2021]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald