The Enzyme Database

Your query returned 48 entries.    printer_iconPrintable version

EC 1.3.8.16     
Accepted name: 2-amino-4-deoxychorismate dehydrogenase
Reaction: (2S)-2-amino-4-deoxychorismate + FMN = 3-(1-carboxyvinyloxy)anthranilate + FMNH2
For diagram of enediyne antitumour antibiotic biosynthesis, click here
Glossary: (2S)-2-amino-4-deoxychorismate = (2S,3S)-3-(1-carboxyvinyloxy)-2,3-dihydroanthranilate
3-enolpyruvoylanthranilate = 3-(1-carboxyvinyloxy)anthranilate
Other name(s): ADIC dehydrogenase; 2-amino-2-deoxyisochorismate dehydrogenase; SgcG
Systematic name: (2S)-2-amino-4-deoxychorismate:FMN oxidoreductase
Comments: The sequential action of EC 2.6.1.86, 2-amino-4-deoxychorismate synthase and this enzyme leads to the formation of the benzoxazolinate moiety of the enediyne antitumour antibiotic C-1027 [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Lanen, S.G., Lin, S. and Shen, B. Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Proc. Natl. Acad. Sci. USA 105 (2008) 494–499. [DOI] [PMID: 18182490]
2.  Yu, L., Mah, S., Otani, T. and Dedon, P. The benzoxazolinate of C-1027 confers intercalative DNA binding. J. Am. Chem. Soc. 117 (1995) 8877–8878. [DOI]
[EC 1.3.8.16 created 2008 as 1.3.99.24, transferred 2020 to EC 1.3.8.16.]
 
 
EC 1.3.99.24      
Transferred entry: 2-amino-4-deoxychorismate dehydrogenase. Now EC 1.3.8.16, 2-amino-4-deoxychorismate dehydrogenase
[EC 1.3.99.24 created 2008, deleted 2020]
 
 
EC 1.5.1.45     
Accepted name: FAD reductase [NAD(P)H]
Reaction: FADH2 + NAD(P)+ = FAD + NAD(P)H + H+
For diagram of FAD biosynthesis, click here
Other name(s): GTNG_3158 (gene name)
Systematic name: FADH2:NAD(P)+ oxidoreductase
Comments: This enzyme, isolated from the bacterium Geobacillus thermodenitrificans, participates in the pathway of tryptophan degradation. The enzyme is part of a system that also includes a bifunctional riboflavin kinase/FMN adenylyltransferase and EC 1.14.14.8, anthranilate 3-monooxygenase (FAD). It can reduce either FAD or flavin mononucleotide (FMN) but prefers FAD. The enzyme has a slight preference for NADPH as acceptor. cf. EC 1.5.1.37, FAD reductase (NADH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, X., Dong, Y., Li, X., Ren, Y., Li, Y., Wang, W., Wang, L. and Feng, L. Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2. Microbiology 156 (2010) 589–595. [DOI] [PMID: 19942660]
[EC 1.5.1.45 created 2012]
 
 
EC 1.7.1.17     
Accepted name: FMN-dependent NADH-azoreductase
Reaction: anthranilate + N,N-dimethyl-1,4-phenylenediamine + 2 NAD+ = 2-(4-dimethylaminophenyl)diazenylbenzoate + 2 NADH + 2 H+
Glossary: 2-(4-dimethylaminophenyl)diazenylbenzoate = methyl red
Other name(s): azoR (gene name); NADH-azoreductase
Systematic name: N,N-dimethyl-1,4-phenylenediamine, anthranilate:NAD+ oxidoreductase
Comments: Requires FMN. The enzyme catalyses the reductive cleavage of an azo bond in aromatic azo compounds to form the corresponding amines. Does not accept NADPH. cf. EC 1.7.1.6, azobenzene reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nakanishi, M., Yatome, C., Ishida, N. and Kitade, Y. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J. Biol. Chem. 276 (2001) 46394–46399. [DOI] [PMID: 11583992]
2.  Ito, K., Nakanishi, M., Lee, W.C., Sasaki, H., Zenno, S., Saigo, K., Kitade, Y. and Tanokura, M. Crystallization and preliminary X-ray analysis of AzoR (azoreductase) from Escherichia coli. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 399–402. [DOI] [PMID: 16511052]
3.  Ito, K., Nakanishi, M., Lee, W.C., Zhi, Y., Sasaki, H., Zenno, S., Saigo, K., Kitade, Y. and Tanokura, M. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J. Biol. Chem. 283 (2008) 13889–13896. [DOI] [PMID: 18337254]
4.  Mercier, C., Chalansonnet, V., Orenga, S. and Gilbert, C. Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction. J. Appl. Microbiol. 115 (2013) 1012–1022. [DOI] [PMID: 23795903]
[EC 1.7.1.17 created 2018]
 
 
EC 1.10.3.5     
Accepted name: 3-hydroxyanthranilate oxidase
Reaction: 3-hydroxyanthranilate + O2 = 6-imino-5-oxocyclohexa-1,3-dienecarboxylate + H2O2
Other name(s): 3-hydroxyanthranilic acid oxidase
Systematic name: 3-hydroxyanthranilate:oxygen oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-53-4
References:
1.  Morgan, L.R., Jr., Weimorts, D.M. and Aubert, C.C. Oxidation of 3-hydroxyanthranilic acid by a soluble liver fraction from poikilothermic vertebrates. Biochim. Biophys. Acta 100 (1965) 393–402. [DOI] [PMID: 14347936]
[EC 1.10.3.5 created 1972]
 
 
EC 1.10.3.6     
Accepted name: rifamycin-B oxidase
Reaction: rifamycin B + O2 = rifamycin O + H2O2
Other name(s): rifamycin B oxidase
Systematic name: rifamycin-B:oxygen oxidoreductase
Comments: Acts also on benzene-1,4-diol and, more slowly, on some other p-quinols. Not identical with EC 1.10.3.1 (catechol oxidase), EC 1.10.3.2 (laccase), EC 1.10.3.4 (o-aminophenol oxidase) or EC 1.10.3.5 (3-hydroxyanthranilate oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 84932-52-5
References:
1.  Han, M.H., Seong, B.-L., Son, H.-J. and Mheen, T.-I. Rifamycin B oxidase from Monocillium spp., a new type of diphenol oxidase. FEBS Lett. 151 (1983) 36–40. [DOI] [PMID: 6825839]
[EC 1.10.3.6 created 1986]
 
 
EC 1.13.1.6      
Transferred entry: Now EC 1.13.11.6, 3-hydroxyanthranilate 3,4-dioxygenase
[EC 1.13.1.6 created 1965, deleted 1972]
 
 
EC 1.13.11.6     
Accepted name: 3-hydroxyanthranilate 3,4-dioxygenase
Reaction: 3-hydroxyanthranilate + O2 = 2-amino-3-carboxymuconate semialdehyde
For diagram of tryptophan catabolism, click here
Other name(s): 3-hydroxyanthranilate oxygenase; 3-hydroxyanthranilic acid oxygenase; 3-hydroxyanthranilic oxygenase; 3-hydroxyanthranilic acid oxidase; 3HAO; 3-hydroxyanthranilate:oxygen 3,4-oxidoreductase (decyclizing)
Systematic name: 3-hydroxyanthranilate:oxygen 3,4-oxidoreductase (ring-opening)
Comments: Requires Fe2+.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-50-9
References:
1.  Decker, R.H., Kang, H.H., Leach, F.R. and Henderson, L.M. Purification and properties of 3-hydroxyanthranilic acid oxidase. J. Biol. Chem. 236 (1961) 3076–3082. [PMID: 13884755]
2.  Hayaishi, O. Direct oxygenation by O2, oxygenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 353–371.
[EC 1.13.11.6 created 1965 as EC 1.13.1.6, transferred 1972 to EC 1.13.11.6]
 
 
EC 1.13.11.17     
Accepted name: indole 2,3-dioxygenase
Reaction: indole + O2 = 2-formylaminobenzaldehyde
Other name(s): indole oxidase; indoleamine 2,3-dioxygenase (ambiguous); indole:O2 oxidoreductase; indole-oxygen 2,3-oxidoreductase (decyclizing); IDO (ambiguous); indole:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: indole:oxygen 2,3-oxidoreductase (ring-opening)
Comments: Enzymes from the plants Tecoma stans, Jasminum grandiflorum and Zea mays are flavoproteins containing copper. They are part of enzyme systems that form either anthranil (2,1-benzoisoxazole) (Tecoma stans), anthranilate (Jasminum grandiflorum) or both (Zea mays) as the final product. A second enzyme from Tecoma stans is not a flavoprotein, does not require copper, and is part of a system that forms anthranilate as the final product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-57-8
References:
1.  Nair, P.M. and Vaidyanathan, C.S. An indole oxidase isolated from the leaves of Tecoma stans. Biochim. Biophys. Acta 81 (1964) 496–506. [PMID: 14170321]
2.  Chauhan, Y.S., Rathore, V.S., Garg, G.K. and Bhargava, A. Detection of an indole oxidizing system in maize leaves. Biochem. Biophys. Res. Commun. 83 (1978) 1237–1245. [DOI] [PMID: 697856]
3.  Divakar, N.G., Subramanian, V., Sugumaran, M. and Vaidyanathan, C.S. Indole oxygenase from the leaves of Jasminum grandiflorum. Plant Sci. Lett. 15 (1979) 177–181.
4.  Kunapuli, S.P. and Vaidyanathan, C.S. Purification and characterization of a new indole oxygenase from the leaves of Tecoma stans L. Plant Physiol. 71 (1983) 19–23. [PMID: 16662784]
[EC 1.13.11.17 created 1972, modified 1986]
 
 
EC 1.13.11.23     
Accepted name: 2,3-dihydroxyindole 2,3-dioxygenase
Reaction: 2,3-dihydroxyindole + O2 = anthranilate + CO2
Other name(s): 2,3-dihydroxyindole:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: 2,3-dihydroxyindole:oxygen 2,3-oxidoreductase (ring-opening)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-62-5
References:
1.  Fujioka, M. and Wada, H. The bacterial oxidation of indole. Biochim. Biophys. Acta 158 (1968) 70–78. [DOI] [PMID: 5652436]
[EC 1.13.11.23 created 1972]
 
 
EC 1.13.11.47     
Accepted name: 3-hydroxy-4-oxoquinoline 2,4-dioxygenase
Reaction: 3-hydroxy-1H-quinolin-4-one + O2 = N-formylanthranilate + CO
For diagram of reaction, click here
Other name(s): (1H)-3-hydroxy-4-oxoquinoline 2,4-dioxygenase; 3-hydroxy-4-oxo-1,4-dihydroquinoline 2,4-dioxygenase; 3-hydroxy-4(1H)-one, 2,4-dioxygenase; quinoline-3,4-diol 2,4-dioxygenase
Systematic name: 3-hydroxy-1H-quinolin-4-one 2,4-dioxygenase (CO-forming)
Comments: Does not contain a metal centre or organic cofactor. Fission of two C-C bonds: 2,4-dioxygenolytic cleavage with concomitant release of carbon monoxide. The enzyme from Pseudomonas putida is highly specific for this substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 238093-32-8
References:
1.  Bauer, I., De Beyer, A., Tsisuaka, B., Fetzner, S. and Lingens, F. A novel type of oxygenolytic ring cleavage: 2,4-Oxygenation and decarbonylation of 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinoline. FEMS Microbiol. Lett. 117 (1994) 299–304.
2.  Bauer, I., Max, N., Fetzner, S. and Lingens, F. 2,4-Dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Ru61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1. Eur. J. Biochem. 240 (1996) 576–583. [DOI] [PMID: 8856057]
3.  Fischer, F., Kunne, S. and Fetzner, S. Bacterial 2,4-dioxygenases: new members of the hydrolase-fold superfamily of enzymes functionally related to serine hydrolases. J. Bacteriol. 181 (1999) 5725–5733. [PMID: 10482514]
[EC 1.13.11.47 created 1999 as EC 1.13.99.5, transferred 2001 to EC 1.13.11.47 (EC 1.12.99.5 created 1999 deleted 2001 as identical)]
 
 
EC 1.13.11.48     
Accepted name: 3-hydroxy-2-methylquinolin-4-one 2,4-dioxygenase
Reaction: 3-hydroxy-2-methyl-1H-quinolin-4-one + O2 = N-acetylanthranilate + CO
For diagram of reaction, click here
Other name(s): (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase
Systematic name: 3-hydroxy-2-methyl-1H-quinolin-4-one 2,4-dioxygenase (CO-forming)
Comments: Does not contain a metal centre or organic cofactor. Fission of two C-C bonds: 2,4-dioxygenolytic cleavage with concomitant release of carbon monoxide. The enzyme from Arthrobacter sp. can also act on 3-hydroxy-4-oxoquinoline, forming N-formylanthranilate and CO (cf. EC 1.13.11.47, 3-hydroxy-4-oxoquinoline 2,4-dioxygenase), but more slowly.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 160995-63-1
References:
1.  Bauer, I., De Beyer, A., Tsisuaka, B., Fetzner, S. and Lingens, F. A novel type of oxygenolytic ring cleavage: 2,4-Oxygenation and decarbonylation of 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinoline. FEMS Microbiol. Lett. 117 (1994) 299–304.
2.  Bauer, I., Max, N., Fetzner, S. and Lingens, F. 2,4-Dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Ru61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1. Eur. J. Biochem. 240 (1996) 576–583. [DOI] [PMID: 8856057]
3.  Fischer, F., Kunne, S. and Fetzner, S. Bacterial 2,4-dioxygenases: new members of the hydrolase-fold superfamily of enzymes functionally related to serine hydrolases. J. Bacteriol. 181 (1999) 5725–5733. [PMID: 10482514]
[EC 1.13.11.48 created 2001]
 
 
EC 1.13.11.64     
Accepted name: 5-nitrosalicylate dioxygenase
Reaction: 5-nitrosalicylate + O2 = 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + nitrite (overall reaction)
(1a) 5-nitrosalicylate + O2 = 4-nitro-6-oxohepta-2,4-dienedioate
(1b) 4-nitro-6-oxohepta-2,4-dienedioate = 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + nitrite (spontaneous)
Other name(s): naaB (gene name); 5-nitrosalicylate:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: 5-nitrosalicylate:oxygen 1,2-oxidoreductase (ring-opening)
Comments: The enzyme, characterized from the soil bacterium Bradyrhizobium sp. JS329, is involved in the pathway of 5-nitroanthranilate degradation. It is unusual in being able to catalyse the ring fission without the requirement for prior removal of the nitro group. The product undergoes spontaneous lactonization, with concurrent elimination of the nitro group.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Qu, Y. and Spain, J.C. Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329. Appl. Environ. Microbiol. 76 (2010) 1417–1422. [DOI] [PMID: 20081004]
2.  Qu, Y. and Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193 (2011) 3057–3063. [DOI] [PMID: 21498645]
[EC 1.13.11.64 created 2012]
 
 
EC 1.14.12.1     
Accepted name: anthranilate 1,2-dioxygenase (deaminating, decarboxylating)
Reaction: anthranilate + NAD(P)H + 2 H+ + O2 = catechol + CO2 + NAD(P)+ + NH3
For diagram of reaction, click here
Other name(s): anthranilate hydroxylase; anthranilic hydroxylase; anthranilic acid hydroxylase
Systematic name: anthranilate,NAD(P)H:oxygen oxidoreductase (1,2-hydroxylating, deaminating, decarboxylating)
Comments: Requires Fe2+.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 9059-17-0
References:
1.  Kobayashi, S. and Hayaishi, O. Anthranilic acid conversion to catechol (Pseudomonas). Methods Enzymol. 17A (1970) 505–510.
2.  Taniguchi, H., Hatanaka, M., Kuno, S., Hayaishi, O., Nakajima, M. and Kurihara, N. Enzymatic formation of catechol from anthranilic acid. J. Biol. Chem. 239 (1964) 2204–2211. [PMID: 14209949]
[EC 1.14.12.1 created 1972]
 
 
EC 1.14.12.2      
Transferred entry: now EC 1.14.13.35 anthranilate 3-monooxygenase (deaminating)
[EC 1.14.12.2 created 1972, deleted 1990]
 
 
EC 1.14.13.27     
Accepted name: 4-aminobenzoate 1-monooxygenase
Reaction: 4-aminobenzoate + NAD(P)H + 2 H+ + O2 = 4-hydroxyaniline + NAD(P)+ + H2O + CO2
Other name(s): 4-aminobenzoate hydroxylase; 4-aminobenzoate monooxygenase
Systematic name: 4-aminobenzoate,NAD(P)H:oxygen oxidoreductase (1-hydroxylating, decarboxylating)
Comments: A flavoprotein (FAD). Acts on anthranilate and 4-aminosalicylate but not on salicylate (cf. EC 1.14.13.1 salicylate 1-monooxygenase).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 98668-55-4
References:
1.  Tsuji, H., Ogawa, T., Bando, N. and Sasaoka, K. Purification and properties of 4-aminobenzoate hydroxylase, a new monooxygenase from Agaricus bisporus. J. Biol. Chem. 261 (1986) 13203–13209. [PMID: 3489713]
[EC 1.14.13.27 created 1989]
 
 
EC 1.14.13.35     
Accepted name: anthranilate 3-monooxygenase (deaminating)
Reaction: anthranilate + NADPH + H+ + O2 = 2,3-dihydroxybenzoate + NADP+ + NH3
Other name(s): anthranilate hydroxylase; anthranilate 2,3-dioxygenase (deaminating); anthranilate hydroxylase (deaminating); anthranilic hydroxylase; anthranilate 2,3-hydroxylase (deaminating)
Systematic name: anthranilate,NADPH:oxygen oxidoreductase (3-hydroxylating, deaminating)
Comments: The enzyme from Aspergillus niger is an iron protein; that from the yeast Trichosporon cutaneum is a flavoprotein (FAD).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-68-1
References:
1.  Powlowski, J.B., Dagley, S., Massey, V. and Ballou, D.P. Properties of anthranilate hydroxylase (deaminating), a flavoprotein from Trichosporon cutaneum. J. Biol. Chem. 262 (1987) 69–74. [PMID: 3793735]
2.  Subramanian, V. and Vaidyanathan, C.S. Anthranilate hydroxylase from Aspergillus niger: new type of NADPH-linked nonheme iron monooxygenase. J. Bacteriol. 160 (1984) 651–655. [PMID: 6501219]
[EC 1.14.13.35 created 1972 as EC 1.14.12.2, transferred 1990 to EC 1.14.13.35]
 
 
EC 1.14.13.216     
Accepted name: asperlicin C monooxygenase
Reaction: asperlicin C + NAD(P)H + H+ + O2 = asperlicin E + NAD(P)+ + H2O
Other name(s): AspB
Systematic name: asperlicin C,NAD(P)H:oxygen oxidoreductase
Comments: The enzyme, characterized from the fungus Aspergillus alliaceus, contains an FAD cofactor. The enzyme inserts a hydroxyl group, leading to formation of a N-C bond that creates an additional cycle between the bicyclic indole and the tetracyclic core moieties, resulting in the heptacyclic asperlicin E.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Haynes, S.W., Gao, X., Tang, Y. and Walsh, C.T. Assembly of asperlicin peptidyl alkaloids from anthranilate and tryptophan: a two-enzyme pathway generates heptacyclic scaffold complexity in asperlicin E. J. Am. Chem. Soc. 134 (2012) 17444–17447. [DOI] [PMID: 23030663]
[EC 1.14.13.216 created 2016]
 
 
EC 1.14.13.223     
Accepted name: 3-hydroxy-4-methylanthranilyl-[aryl-carrier protein] 5-monooxygenase
Reaction: 3-hydroxy-4-methylanthranilyl-[aryl-carrier protein] + NADH + H+ + O2 = 3,5-dihydroxy-4-methylanthranilyl-[aryl-carrier protein] + NAD+ + H2O
Glossary: anthranilate = 2-aminobenzoate
Other name(s): sibG (gene name)
Systematic name: 3-hydroxy-4-methylanthranilyl-[aryl-carrier protein],NADH:oxygen oxidoreductase (5-hydroxylating)
Comments: A flavoprotein (FAD). The enzyme, characterized from the bacterium Streptosporangium sibiricum, is involved in the biosynthesis of the antitumor antibiotic sibiromycin. The enzyme is not active with free 3-hydroxy-4-methylanthranilate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Giessen, T.W., Kraas, F.I. and Marahiel, M.A. A four-enzyme pathway for 3,5-dihydroxy-4-methylanthranilic acid formation and incorporation into the antitumor antibiotic sibiromycin. Biochemistry 50 (2011) 5680–5692. [DOI] [PMID: 21612226]
[EC 1.14.13.223 created 2016]
 
 
EC 1.14.14.8     
Accepted name: anthranilate 3-monooxygenase (FAD)
Reaction: anthranilate + FADH2 + O2 = 3-hydroxyanthranilate + FAD + H2O
Glossary: anthranilate = 2-aminobenzoate
Other name(s): anthranilate 3-hydroxylase; anthranilate hydroxylase
Systematic name: anthranilate,FADH2:oxygen oxidoreductase (3-hydroxylating)
Comments: This enzyme, isolated from the bacterium Geobacillus thermodenitrificans, participates in the pathway of tryptophan degradation. The enzyme is part of a system that also includes a bifunctional riboflavin kinase/FMN adenylyltransferase and an FAD reductase, which ensures ample supply of FAD to the monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, X., Dong, Y., Li, X., Ren, Y., Li, Y., Wang, W., Wang, L. and Feng, L. Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2. Microbiology 156 (2010) 589–595. [DOI] [PMID: 19942660]
[EC 1.14.14.8 created 2010]
 
 
EC 1.14.16.3      
Deleted entry: anthranilate 3-monooxygenase. Withdrawn owing to insufficient evidence.
[EC 1.14.16.3 created 1972, deleted 2020]
 
 
EC 2.1.1.97     
Accepted name: 3-hydroxyanthranilate 4-C-methyltransferase
Reaction: S-adenosyl-L-methionine + 3-hydroxyanthranilate = S-adenosyl-L-homocysteine + 3-hydroxy-4-methylanthranilate
Other name(s): 3-hydroxyanthranilate 4-methyltransferase
Systematic name: S-adenosyl-L-methionine:3-hydroxyanthranilate 4-C-methyltransferase
Comments: Involved in the biosynthesis of the antibiotic actinomycin in Streptomyces antibioticus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 112445-22-4
References:
1.  Fawaz, F. and Jones, G.H. Actinomycin synthesis in Streptomyces antibioticus. Purification and properties of a 3-hydroxyanthranilate 4-methyltransferase. J. Biol. Chem. 263 (1988) 4602–4606. [PMID: 2450873]
[EC 2.1.1.97 created 1990]
 
 
EC 2.1.1.105     
Accepted name: N-benzoyl-4-hydroxyanthranilate 4-O-methyltransferase
Reaction: S-adenosyl-L-methionine + N-benzoyl-4-hydroxyanthranilate = S-adenosyl-L-homocysteine + N-benzoyl-4-methoxyanthranilate
Other name(s): N-benzoyl-4-hydroxyanthranilate 4-methyltransferase; benzoyl-CoA:anthranilate N-benzoyltransferase
Systematic name: S-adenosyl-L-methionine:N-benzoyl-4-O-hydroxyanthranilate 4-O-methyltransferase
Comments: Involved in the biosynthesis of phytoalexins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 125498-68-2
References:
1.  Reinhard, K. and Matern, U. The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA:anthranilate N-benzoyltransferase activity. Arch. Biochem. Biophys. 275 (1989) 295–301. [DOI] [PMID: 2817901]
[EC 2.1.1.105 created 1992]
 
 
EC 2.1.1.111     
Accepted name: anthranilate N-methyltransferase
Reaction: S-adenosyl-L-methionine + anthranilate = S-adenosyl-L-homocysteine + N-methylanthranilate
For diagram of acridone alkaloid biosynthesis, click here
Other name(s): anthranilic acid N-methyltransferase
Systematic name: S-adenosyl-L-methionine:anthranilate N-methyltransferase
Comments: Involved in the biosynthesis of acridine alkaloids in plant tissues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 123779-15-7
References:
1.  Eilert, U. and Wolters, B. Elicitor induction of S-adenosyl-L-methionine-anthranilic acid N-methyltransferase activity in cell-suspension and organ-cultures of Ruta graveolens L. Plant Cell, Tissue Organ Cult. 18 (1989) 1–18.
[EC 2.1.1.111 created 1992]
 
 
EC 2.1.1.277     
Accepted name: anthranilate O-methyltransferase
Reaction: S-adenosyl-L-methionine + anthranilate = S-adenosyl-L-homocysteine + O-methyl anthranilate
Other name(s): AAMT
Systematic name: S-adenosyl-L-methionine:anthranilate O-methyltransferase
Comments: In the plant maize (Zea mays), the isoforms AAMT1 and AAMT2 are specific for anthranilate while AAMT3 also has the activity of EC 2.1.1.273, benzoate methyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Köllner, T.G., Lenk, C., Zhao, N., Seidl-Adams, I., Gershenzon, J., Chen, F. and Degenhardt, J. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine. Plant Physiol. 153 (2010) 1795–1807. [DOI] [PMID: 20519632]
[EC 2.1.1.277 created 2013]
 
 
EC 2.3.1.5     
Accepted name: arylamine N-acetyltransferase
Reaction: acetyl-CoA + an arylamine = CoA + an N-acetylarylamine
Other name(s): arylamine acetylase; β-naphthylamine N-acetyltransferase; 4-aminobiphenyl N-acetyltransferase; acetyl CoA-arylamine N-acetyltransferase; 2-naphthylamine N-acetyltransferase; arylamine acetyltransferase; indoleamine N-acetyltransferase; N-acetyltransferase (ambiguous); p-aminosalicylate N-acetyltransferase; serotonin acetyltransferase; serotonin N-acetyltransferase
Systematic name: acetyl-CoA:arylamine N-acetyltransferase
Comments: Wide specificity for aromatic amines, including serotonin; also catalyses acetyl-transfer between arylamines without CoA.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-33-2
References:
1.  Chou, T.C. and Lipmann, F. Separation of acetyl transfer enzymes in pigeon liver extract. J. Biol. Chem. 196 (1952) 89–103. [PMID: 12980945]
2.  Paul, R.C. and Ratledge, C. Further studies on anthranilate N-acetylanthranilic acid in Aerobacter aerogenes. Biochim. Biophys. Acta 320 (1973) 9–15. [DOI] [PMID: 4748369]
3.  Tabor, H., Mehler, A.H. and Stadtman, E.R. The enzymatic acetylation of amines. J. Biol. Chem. 204 (1953) 127–138. [PMID: 13084583]
4.  Weissbach, H., Redfield, B.G. and Axelrod, J. The enzymic acetylation of serotonin and other naturally occurring amines. Biochim. Biophys. Acta 54 (1961) 190–192. [DOI] [PMID: 14005907]
[EC 2.3.1.5 created 1961]
 
 
EC 2.3.1.113     
Accepted name: anthranilate N-malonyltransferase
Reaction: malonyl-CoA + anthranilate = CoA + N-malonylanthranilate
Systematic name: malonyl-CoA:anthranilate N-malonyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 94489-98-2
References:
1.  Matern, U., Feser, C. and Heller, W. N-Malonyltransferases from peanut. Arch. Biochem. Biophys. 235 (1984) 218–227. [DOI] [PMID: 6497391]
[EC 2.3.1.113 created 1989]
 
 
EC 2.3.1.144     
Accepted name: anthranilate N-benzoyltransferase
Reaction: benzoyl-CoA + anthranilate = CoA + N-benzoylanthranilate
Systematic name: benzoyl-CoA:anthranilate N-benzoyltransferase
Comments: Cinnamoyl-CoA, 4-coumaroyl-CoA and salicyloyl-CoA can act as donors, but more slowly. Involved in the biosynthesis of phytoalexins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 125498-59-1
References:
1.  Reinhard, K. and Matern, U. The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA:anthranilate N-benzoyltransferase activity. Arch. Biochem. Biophys. 275 (1989) 295–301. [DOI] [PMID: 2817901]
[EC 2.3.1.144 created 1992]
 
 
EC 2.3.1.232     
Accepted name: methanol O-anthraniloyltransferase
Reaction: anthraniloyl-CoA + methanol = CoA + O-methyl anthranilate
Glossary: anthraniloyl-CoA = 2-aminobenzoyl-CoA
Other name(s): AMAT; anthraniloyl-coenzyme A (CoA):methanol acyltransferase
Systematic name: anthraniloyl-CoA:methanol O-anthraniloyltransferase
Comments: The enzyme from Concord grape (Vitis labrusca) is solely responsible for the production of O-methyl anthranilate, an important aroma and flavor compound in the grape. The enzyme has a broad substrate specificity, and can use a range of alcohols with substantial activity, the best being butanol, benzyl alcohol, iso-pentanol, octanol and 2-propanol. It can use benzoyl-CoA and acetyl-CoA as acyl donors with lower efficiency. In addition to O-methyl anthranilate, the enzyme might be responsible for the production of ethyl butanoate, methyl-3-hydroxy butanoate and ethyl-3-hydroxy butanoate, which are present in large quantities in the grapes. Also catalyses EC 2.3.1.196, benzyl alcohol O-benzoyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wang, J. and De Luca, V. The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ’foxy’ methylanthranilate. Plant J. 44 (2005) 606–619. [DOI] [PMID: 16262710]
[EC 2.3.1.232 created 2014]
 
 
EC 2.3.1.262     
Accepted name: anthraniloyl-CoA anthraniloyltransferase
Reaction: anthraniloyl-CoA + malonyl-CoA = (2-aminobenzoyl)acetyl-CoA + CoA + CO2 (overall reaction)
(1a) anthraniloyl-CoA + L-cysteinyl-[PqsD protein] = S-anthraniloyl-L-cysteinyl-[PqsD protein] + CoA
(1b) S-anthraniloyl-L-cysteinyl-[PqsD protein] + malonyl-CoA = (2-aminobenzoyl)acetyl-CoA + CO2 + L-cysteinyl-[PqsD protein]
Glossary: anthraniloyl-CoA = 2-aminobenzoyl-CoA
Other name(s): pqsD (gene name)
Systematic name: anthraniloyl-CoA:malonyl-CoA anthraniloyltransferase
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, participates in the synthesis of the secondary metabolites 2-heptyl-3-hydroxy-4(1H)-quinolone and 4-hydroxy-2(1H)-quinolone. The enzyme transfers an anthraniloyl group from anthraniloyl-CoA to an internal L-cysteine residue, followed by its transfer to malonyl-CoA to produce a short-lived product that can cyclize spontaneously to form 4-hydroxy-2(1H)-quinolone. However, when EC 3.1.2.32, 2-aminobenzoylacetyl-CoA thioesterase, is present, it removes the CoA moiety from the product, forming the stable (2-aminobenzoyl)acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bera, A.K., Atanasova, V., Robinson, H., Eisenstein, E., Coleman, J.P., Pesci, E.C. and Parsons, J.F. Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate. Biochemistry 48 (2009) 8644–8655. [DOI] [PMID: 19694421]
2.  Dulcey, C.E., Dekimpe, V., Fauvelle, D.A., Milot, S., Groleau, M.C., Doucet, N., Rahme, L.G., Lepine, F. and Deziel, E. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem. Biol. 20 (2013) 1481–1491. [DOI] [PMID: 24239007]
3.  Drees, S.L. and Fetzner, S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem. Biol. 22 (2015) 611–618. [DOI] [PMID: 25960261]
[EC 2.3.1.262 created 2017]
 
 
EC 2.3.1.302     
Accepted name: hydroxycinnamoyl-CoA:5-hydroxyanthranilate N-hydroxycinnamoyltransferase
Reaction: (1) (E)-4-coumaroyl-CoA + 5-hydroxyanthranilate = avenanthramide A + CoA
(2) (E)-caffeoyl-CoA + 5-hydroxyanthranilate = avenanthramide C + CoA
Glossary: avenanthramide A = 5-hydroxy-2-[(2E)-3-(4-hydroxyphenyl)prop-2-enamido]benzoate
avenanthramide C = 2-[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enamido]-5-hydroxybenzoate
Other name(s): HHT1 (gene name); HHT4 (gene name)
Systematic name: hydroxycinnamoyl-CoA:5-hydroxyanthranilate N-hydroxycinnamoyltransferase
Comments: The enzyme participates in the biosynthesis of avenanthramides, phenolic alkaloids found mainly in oats (Avena sativa). It is related to EC 2.3.1.133, shikimate O-hydroxycinnamoyltransferase. The enzyme from oat does not accept feruloyl-CoA as a substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ishihara, A., Matsukawa, T., Miyagawa, H., Ueno, T. and Mayama, S. Induction of hydroxycinnamoyl-CoA: hydroxyanthranilate N-hydroxycinnamoyltransferase (HHT) activity in oat leaves by victorin C. Z. Naturforsch. C 52 (1997) 756–760. [DOI]
2.  Yang, Q., Trinh, H.X., Imai, S., Ishihara, A., Zhang, L., Nakayashiki, H., Tosa, Y. and Mayama, S. Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol. Plant Microbe Interact. 17 (2004) 81–89. [DOI] [PMID: 14714871]
3.  D'Auria, J.C. Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9 (2006) 331–340. [DOI] [PMID: 16616872]
4.  Bontpart, T., Cheynier, V., Ageorges, A. and Terrier, N. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol. 208 (2015) 695–707. [DOI] [PMID: 26053460]
5.  Li, Z., Chen, Y., Meesapyodsuk, D. and Qiu, X. The biosynthetic pathway of major avenanthramides in oat. Metabolites 9 (2019) . [DOI] [PMID: 31394723]
[EC 2.3.1.302 created 2021]
 
 
EC 2.4.2.18     
Accepted name: anthranilate phosphoribosyltransferase
Reaction: N-(5-phospho-D-ribosyl)-anthranilate + diphosphate = anthranilate + 5-phospho-α-D-ribose 1-diphosphate
For diagram of tryptophan biosynthesis, click here
Other name(s): phosphoribosyl-anthranilate pyrophosphorylase; PRT; anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase; anthranilate phosphoribosylpyrophosphate phosphoribosyltransferase; phosphoribosylanthranilate pyrophosphorylase; phosphoribosylanthranilate transferase; anthranilate-PP-ribose-P phosphoribosyltransferase
Systematic name: N-(5-phospho-D-ribosyl)-anthranilate:diphosphate phospho-α-D-ribosyltransferase
Comments: In some organisms, this enzyme is part of a multifunctional protein together with one or more other components of the system for biosynthesis of tryptophan [EC 4.1.1.48 (indole-3-glycerol-phosphate synthase), EC 4.1.3.27 (anthranilate synthase), EC 4.2.1.20 (tryptophan synthase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9059-35-2
References:
1.  Creighton, T.E. and Yanofsky, C. Chorismate to tryptophan (Escherichia coli) - anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol. 17A (1970) 365–380.
2.  Hütter, R., Niederberger, P. and DeMoss, J.A. Tryptophan synthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40 (1986) 55–77. [DOI] [PMID: 3535653]
3.  Ito, J. and Yanofsky, C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: Comparative studies on the complex and the subunits. J. Bacteriol. 97 (1969) 734–742. [PMID: 4886290]
4.  Wegman, J. and DeMoss, J.A. The enzymatic conversion of anthranilate to indolylglycerol phosphate in Neurospora crassa. J. Biol. Chem. 240 (1965) 3781–3788. [PMID: 5842052]
[EC 2.4.2.18 created 1972]
 
 
EC 2.6.1.86     
Accepted name: 2-amino-4-deoxychorismate synthase
Reaction: (2S)-2-amino-4-deoxychorismate + L-glutamate = chorismate + L-glutamine
For diagram of enediyne antitumour antibiotic biosynthesis, click here
Glossary: (2S)-2-amino-4-deoxychorismate = (2S,3S)-3-(1-carboxyvinyloxy)-2,3-dihydroanthranilate
Other name(s): ADIC synthase; 2-amino-2-deoxyisochorismate synthase; SgcD
Systematic name: (2S)-2-amino-4-deoxychorismate:2-oxoglutarate aminotransferase
Comments: Requires Mg2+. The reaction occurs in the reverse direction to that shown above. In contrast to most anthranilate-synthase I (ASI) homologues, this enzyme is not inhibited by tryptophan. In Streptomyces globisporus, the sequential action of this enzyme and EC 1.3.99.24, 2-amino-4-deoxychorismate dehydrogenase, leads to the formation of the benzoxazolinate moiety of the enediyne antitumour antibiotic C-1027 [1,2]. In certain Pseudomonads the enzyme participates in the biosynthesis of phenazine, a precursor for several compounds with antibiotic activity [3,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Lanen, S.G., Lin, S. and Shen, B. Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Proc. Natl. Acad. Sci. USA 105 (2008) 494–499. [DOI] [PMID: 18182490]
2.  Yu, L., Mah, S., Otani, T. and Dedon, P. The benzoxazolinate of C-1027 confers intercalative DNA binding. J. Am. Chem. Soc. 117 (1995) 8877–8878. [DOI]
3.  McDonald, M., Mavrodi, D.V., Thomashow, L.S. and Floss, H.G. Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J. Am. Chem. Soc. 123 (2001) 9459–9460. [PMID: 11562236]
4.  Laursen, J.B. and Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104 (2004) 1663–1686. [DOI] [PMID: 15008629]
[EC 2.6.1.86 created 2008]
 
 
EC 2.7.7.55      
Deleted entry: anthranilate adenylyltransferase. The activity is part of EC 6.3.2.40, cyclopeptine synthase.
[EC 2.7.7.55 created 1989, deleted 2013]
 
 
EC 2.7.7.97     
Accepted name: 3-hydroxy-4-methylanthranilate adenylyltransferase
Reaction: ATP + 3-hydroxy-4-methylanthranilate = diphosphate + 3-hydroxy-4-methylanthranilyl-adenylate
Other name(s): acmA (gene name); sibE (gene name); actinomycin synthase I; 4-MHA-activating enzyme; ACMS I; actinomycin synthetase I; 4-MHA pentapeptide lactone synthase AcmA
Systematic name: ATP:3-hydroxy-4-methylanthranilate adenylyltransferase
Comments: The enzyme, characterized from the bacteria Streptomyces anulatus and Streptosporangium sibiricum, activates 3-hydroxy-4-methylanthranilate, a precursor of actinomycin antibiotics and the antitumor antibiotic sibiromycin, to an adenylate form, so it can be loaded onto a dedicated aryl-carrier protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pfennig, F., Schauwecker, F. and Keller, U. Molecular characterization of the genes of actinomycin synthetase I and of a 4-methyl-3-hydroxyanthranilic acid carrier protein involved in the assembly of the acylpeptide chain of actinomycin in Streptomyces. J. Biol. Chem. 274 (1999) 12508–12516. [DOI] [PMID: 10212227]
2.  Giessen, T.W., Kraas, F.I. and Marahiel, M.A. A four-enzyme pathway for 3,5-dihydroxy-4-methylanthranilic acid formation and incorporation into the antitumor antibiotic sibiromycin. Biochemistry 50 (2011) 5680–5692. [DOI] [PMID: 21612226]
[EC 2.7.7.97 created 2016]
 
 
EC 3.1.1.91     
Accepted name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonase
Reaction: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + H2O = maleylpyruvate
Other name(s): naaC (gene name)
Systematic name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonohydrolase
Comments: This enzyme, characterized from the soil bacterium Bradyrhizobium sp. JS329, is involved in the pathway of 5-nitroanthranilate degradation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Qu, Y. and Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193 (2011) 3057–3063. [DOI] [PMID: 21498645]
[EC 3.1.1.91 created 2012]
 
 
EC 3.3.2.15     
Accepted name: trans-2,3-dihydro-3-hydroxyanthranilic acid synthase
Reaction: (2S)-2-amino-4-deoxychorismate + H2O = (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate + pyruvate
For diagram of enediyne antitumour antibiotic biosynthesis and pyocyanin biosynthesis, click here
Glossary: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate = trans-2,3-dihydro-3-hydroxyanthranilate
Other name(s): isochorismatase (ambiguous); phzD (gene name)
Systematic name: (2S)-2-amino-4-deoxychorismate pyruvate-hydrolase
Comments: Isolated from the bacterium Pseudomonas aeruginosa. Involved in phenazine biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mavrodi, D.V., Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G. and Thomashow, L.S. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183 (2001) 6454–6465. [DOI] [PMID: 11591691]
2.  Parsons, J.F., Calabrese, K., Eisenstein, E. and Ladner, J.E. Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry 42 (2003) 5684–5693. [DOI] [PMID: 12741825]
[EC 3.3.2.15 created 2016]
 
 
EC 3.5.99.5     
Accepted name: 2-aminomuconate deaminase
Reaction: 2-aminomuconate + H2O = (3E)-2-oxohex-3-enedioate + NH3
Other name(s): amnD (gene name); nbaF (gene name)
Systematic name: 2-aminomuconate aminohydrolase
Comments: 2-Aminomuconate is an intermediate in the bacterial biodegradation of nitrobenzene. The enzyme has been isolated from several species, including Pseudomonas pseudocaligenes JS45, Pseudomonas fluorescens KU-7, Pseudomonas sp. AP3 and Burkholderia cenocepacia J2315. The reaction is spontaneous in acid conditions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 201098-29-5
References:
1.  He, Z and Spain, J.C. Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde. Appl. Environ. Microbiol. 63 (1997) 4839–4843. [PMID: 9471964]
2.  He, Z. and Spain, J.C. A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 180 (1998) 2502–2506. [PMID: 9573204]
3.  Takenaka, S., Murakami, S., Kim, Y.J. and Aoki, K. Complete nucleotide sequence and functional analysis of the genes for 2-aminophenol metabolism from Pseudomonas sp. AP-3. Arch. Microbiol. 174 (2000) 265–272. [PMID: 11081795]
4.  Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H. and Lau, P.C. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl. Environ. Microbiol. 69 (2003) 1564–1572. [DOI] [PMID: 12620844]
[EC 3.5.99.5 created 2000, modified 2012]
 
 
EC 3.5.99.8     
Accepted name: 5-nitroanthranilic acid aminohydrolase
Reaction: 5-nitroanthranilate + H2O = 5-nitrosalicylate + NH3
Other name(s): naaA (gene name); 5NAA deaminase
Systematic name: 5-nitroanthranilate amidohydrolase
Comments: The enzyme catalyses the initial step in biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Qu, Y. and Spain, J.C. Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329. Appl. Environ. Microbiol. 76 (2010) 1417–1422. [DOI] [PMID: 20081004]
[EC 3.5.99.8 created 2011]
 
 
EC 3.7.1.3     
Accepted name: kynureninase
Reaction: L-kynurenine + H2O = anthranilate + L-alanine
For diagram of tryptophan catabolism, click here
Systematic name: L-kynurenine hydrolase
Comments: A pyridoxal-phosphate protein. Also acts on 3′-hydroxy-L-kynurenine and some other (3-arylcarbonyl)-alanines.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-78-6
References:
1.  Jakoby, W.B. and Bonner, D.M. Kynureninase from Neurospora: purification and properties. J. Biol. Chem. 205 (1953) 699–707. [PMID: 13129248]
2.  Jakoby, W.B. and Bonner, D.M. Kynureninase from Neurospora: interactions of enzyme with substrates, coenzyme and amines. J. Biol. Chem. 205 (1953) 709–715. [PMID: 13129249]
3.  Knox, W.E. The relation of liver kynureninase to tryptophan metabolism in pyridoxine deficiency. Biochem. J. 53 (1953) 379–385. [PMID: 13032082]
4.  Wiss, O. and Weber, F. Die Reindarstellung der Kynureninase. Hoppe-Seyler's Z. Physiol. Chem. 304 (1956) 232–240.
[EC 3.7.1.3 created 1965]
 
 
EC 3.7.1.13     
Accepted name: 2-hydroxy-6-oxo-6-(2-aminophenyl)hexa-2,4-dienoate hydrolase
Reaction: (2E,4E)-6-(2-aminophenyl)-2-hydroxy-6-oxohexa-2,4-dienoate + H2O = anthranilate + (2E)-2-hydroxypenta-2,4-dienoate
Other name(s): CarC
Systematic name: (2E,4E)-6-(2-aminophenyl)-2-hydroxy-6-oxohexa-2,4-dienoate acylhydrolase
Comments: This enzyme catalyses the third step in the aerobic degradation pathway of carbazole. The effect of the presence of an amino group or hydroxyl group at the 2-position of the substrate is small. The enzyme has no cofactor requirement [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nojiri, H., Taira, H., Iwata, K., Morii, K., Nam, J.W., Yoshida, T., Habe, H., Nakamura, S., Shimizu, K., Yamane, H. and Omori, T. Purification and characterization of meta-cleavage compound hydrolase from a carbazole degrader Pseudomonas resinovorans strain CA10. Biosci. Biotechnol. Biochem. 67 (2003) 36–45. [DOI] [PMID: 12619671]
2.  Riddle, R.R., Gibbs, P.R., Willson, R.C. and Benedik, M.J. Purification and properties of 2-hydroxy-6-oxo-6-(2′-aminophenyl)hexa-2,4-dienoic acid hydrolase involved in microbial degradation of carbazole. Protein Expr. Purif. 28 (2003) 182–189. [DOI] [PMID: 12651123]
[EC 3.7.1.13 created 2010]
 
 
EC 4.1.1.48     
Accepted name: indole-3-glycerol-phosphate synthase
Reaction: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate = 1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
For diagram of tryptophan biosynthesis, click here
Other name(s): indoleglycerol phosphate synthetase; indoleglycerol phosphate synthase; indole-3-glycerophosphate synthase; 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate carboxy-lyase (cyclizing)
Systematic name: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate carboxy-lyase [cyclizing; 1-C-(indol-3-yl)glycerol-3-phosphate-forming]
Comments: In some organisms, this enzyme is part of a multifunctional protein, together with one or more other components of the system for the biosynthesis of tryptophan [EC 2.4.2.18 (anthranilate phosphoribosyltransferase), EC 4.1.3.27 (anthranilate synthase), EC 4.2.1.20 (tryptophan synthase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-60-1
References:
1.  Creighton, T.E. and Yanofsky, C. Indole-3-glycerol phosphate synthetase of Escherichia coli, an enzyme of the tryptophan operon. J. Biol. Chem. 241 (1966) 4616–4624. [PMID: 5332729]
2.  Creighton, T.E. and Yanofsky, C. Chorismate to tryptophan (Escherichia coli) - anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol. 17A (1970) 365–380.
3.  Hütter, R., Niederberger, P. and DeMoss, J.A. Tryptophan synthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40 (1986) 55–77. [DOI] [PMID: 3535653]
[EC 4.1.1.48 created 1972]
 
 
EC 4.1.3.27     
Accepted name: anthranilate synthase
Reaction: chorismate + L-glutamine = anthranilate + pyruvate + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) chorismate + NH3 = (2S)-2-amino-4-deoxychorismate + H2O
(1c) (2S)-2-amino-4-deoxychorismate = anthranilate + pyruvate
For diagram of tryptophan biosynthesis, click here
Other name(s): anthranilate synthetase; chorismate lyase; chorismate pyruvate-lyase (amino-accepting); TrpDE
Systematic name: chorismate pyruvate-lyase (amino-accepting; anthranilate-forming)
Comments: The enzyme, found in plants, fungi and bacteria is composed of two parts, a glutaminase subunit and a lyase subunit. The glutaminase produces ammonia that is channeled to the lyase subunit. In the absence of the glutaminase, the lyase can convert ammonia and chorismate into anthranilate. In some organisms, this enzyme is part of a multifunctional protein, together with one or more other components of the system for the biosynthesis of tryptophan [EC 2.4.2.18 (anthranilate phosphoribosyltransferase), EC 4.1.1.48 (indole-3-glycerol-phosphate synthase), EC 4.2.1.20 (tryptophan synthase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-59-8
References:
1.  Baker, T. and Crawford, I.P. Anthranilate synthetase. Partial purification and some kinetic studies on the enzyme from Escherichia coli. J. Biol. Chem. 241 (1966) 5577–5584. [PMID: 5333199]
2.  Creighton, T.E. and Yanofsky, C. Chorismate to tryptophan (Escherichia coli) - anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol. 17A (1970) 365–380.
3.  Hütter, R., Niederberger, P. and DeMoss, J.A. Tryptophan synthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40 (1986) 55–77. [DOI] [PMID: 3535653]
4.  Ito, J. and Yanofsky, C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: Comparative studies on the complex and the subunits. J. Bacteriol. 97 (1969) 734–742. [PMID: 4886290]
5.  Zalkin, H. and Kling, D. Anthranilate synthetase. Purification and properties of component I from Salmonella typhimurium. Biochemistry 7 (1968) 3566–3573. [PMID: 4878701]
6.  Morollo, A.A. and Bauerle, R. Characterization of composite aminodeoxyisochorismate synthase and aminodeoxyisochorismate lyase activities of anthranilate synthase. Proc. Natl. Acad. Sci. USA 90 (1993) 9983–9987. [DOI] [PMID: 8234345]
7.  Kanno, T., Kasai, K., Ikejiri-Kanno, Y., Wakasa, K. and Tozawa, Y. In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the α subunits OASA1 and OASA2. Plant Mol. Biol. 54 (2004) 11–22. [DOI] [PMID: 15159631]
[EC 4.1.3.27 created 1972, modified 2022]
 
 
EC 4.2.1.20     
Accepted name: tryptophan synthase
Reaction: L-serine + 1-C-(indol-3-yl)glycerol 3-phosphate = L-tryptophan + D-glyceraldehyde 3-phosphate + H2O (overall reaction)
(1a) 1-C-(indol-3-yl)glycerol 3-phosphate = indole + D-glyceraldehyde 3-phosphate
(1b) L-serine + indole = L-tryptophan + H2O
For diagram of tryptophan biosynthesis, click here
Other name(s): L-tryptophan synthetase; indoleglycerol phosphate aldolase; tryptophan desmolase; tryptophan synthetase; L-serine hydro-lyase (adding indoleglycerol-phosphate); L-serine hydro-lyase [adding 1-C-(indol-3-yl)glycerol 3-phosphate, L-tryptophan and glyceraldehyde-3-phosphate-forming]
Systematic name: L-serine hydro-lyase [adding 1-C-(indol-3-yl)glycerol 3-phosphate, L-tryptophan and D-glyceraldehyde-3-phosphate-forming]
Comments: A pyridoxal-phosphate protein. The α-subunit catalyses the conversion of 1-C-(indol-3-yl)glycerol 3-phosphate to indole and D-glyceraldehyde 3-phosphate (this reaction was included formerly under EC 4.1.2.8). The indole migrates to the β-subunit where, in the presence of pyridoxal 5′-phosphate, it is combined with L-serine to form L-tryptophan. In some organisms this enzyme is part of a multifunctional protein that also includes one or more of the enzymes EC 2.4.2.18 (anthranilate phosphoribosyltransferase), EC 4.1.1.48 (indole-3-glycerol-phosphate synthase), EC 4.1.3.27 (anthranilate synthase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase). In thermophilic organisms, where the high temperature enhances diffusion and causes the loss of indole, a protein similar to the β subunit can be found (EC 4.2.1.122). That enzyme cannot combine with the α unit of EC 4.2.1.20 to form a complex.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9014-52-2
References:
1.  Crawford, I.P. and Yanofsky, C. On the separation of the tryptophan synthetase of Escherichia coli into two protein components. Proc. Natl. Acad. Sci. USA 44 (1958) 1161–1170. [DOI] [PMID: 16590328]
2.  Creighton, T.E. and Yanofsky, C. Chorismate to tryptophan (Escherichia coli) - anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol. 17A (1970) 365–380.
3.  Hütter, R., Niederberger, P. and DeMoss, J.A. Tryptophan synthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40 (1986) 55–77. [DOI] [PMID: 3535653]
4.  Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W. and Davies, D.R. Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263 (1988) 17857–17871. [PMID: 3053720]
5.  Woehl, E. and Dunn, M.F. Mechanisms of monovalent cation action in enzyme catalysis: the tryptophan synthase α-, β-, and αβ-reactions. Biochemistry 38 (1999) 7131–7141. [DOI] [PMID: 10353823]
[EC 4.2.1.20 created 1961, modified 1976, modified 2002, modified 2011]
 
 
EC 5.3.1.24     
Accepted name: phosphoribosylanthranilate isomerase
Reaction: N-(5-phospho-β-D-ribosyl)anthranilate = 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate
For diagram of tryptophan biosynthesis, click here
Other name(s): PRA isomerase; PRAI; IGPS:PRAI (indole-3-glycerol-phosphate synthetase/N-5′-phosphoribosylanthranilate isomerase complex); N-(5-phospho-β-D-ribosyl)anthranilate ketol-isomerase
Systematic name: N-(5-phospho-β-D-ribosyl)anthranilate aldose-ketose-isomerase
Comments: In some organisms, this enzyme is part of a multifunctional protein, together with one or more other components of the system for the biosynthesis of tryptophan [EC 2.4.2.18 (anthranilate phosphoribosyltransferase), EC 4.1.1.48 (indole-3-glycerol-phosphate synthase), EC 4.1.3.27 (anthranilate synthase) and EC 4.2.1.20 (tryptophan synthase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37259-82-8
References:
1.  Braus, G.H., Luger, K., Paravicini, G., Schmidheini, T., Kirschner, K. and Hütter, R. The role of the TRP1 gene in yeast tryptophan biosynthesis. J. Biol. Chem. 263 (1988) 7868–7875. [PMID: 3286643]
2.  Creighton, T.E. and Yanofsky, C. Chorismate to tryptophan (Escherichia coli) - anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol. 17A (1970) 365–380.
3.  Hütter, R., Niederberger, P. and DeMoss, J.A. Tryptophan synthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40 (1986) 55–77. [DOI] [PMID: 3535653]
[EC 5.3.1.24 created 1990]
 
 
EC 5.3.3.17     
Accepted name: trans-2,3-dihydro-3-hydroxyanthranilate isomerase
Reaction: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxyate = (1R,6S)-6-amino-5-oxocyclohex-2-ene-1-carboxylate
For diagram of enediyne antitumour antibiotic biosynthesis and pyocyanin biosynthesis, click here
Glossary: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate = trans-2,3-dihydro-3-hydroxyanthranilate
Other name(s): phzF (gene name); (5S,6S)-6-amino-5-hydroxycyclohexane-1,3-diene-1-carboxyate isomerase (incorrect)
Systematic name: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxyate isomerase
Comments: The enzyme is involved in phenazine biosynthesis. The product probably spontaneously dimerises to 1,4,5a,6,9,10a-hexahydrophenazine-1,6-dicarboxylate
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Parsons, J.F., Song, F., Parsons, L., Calabrese, K., Eisenstein, E. and Ladner, J.E. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry 43 (2004) 12427–12435. [DOI] [PMID: 15449932]
2.  Blankenfeldt, W., Kuzin, A.P., Skarina, T., Korniyenko, Y., Tong, L., Bayer, P., Janning, P., Thomashow, L.S. and Mavrodi, D.V. Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc. Natl. Acad. Sci. USA 101 (2004) 16431–16436. [DOI] [PMID: 15545603]
3.  Parsons, J.F., Calabrese, K., Eisenstein, E. and Ladner, J.E. Structure of the phenazine biosynthesis enzyme PhzG. Acta Crystallogr. D Biol. Crystallogr. 60 (2004) 2110–2113. [DOI] [PMID: 15502343]
4.  Mavrodi, D.V., Bleimling, N., Thomashow, L.S. and Blankenfeldt, W. The purification, crystallization and preliminary structural characterization of PhzF, a key enzyme in the phenazine-biosynthesis pathway from Pseudomonas fluorescens 2-79. Acta Crystallogr. D Biol. Crystallogr. 60 (2004) 184–186. [PMID: 14684924]
5.  Ahuja, E.G., Janning, P., Mentel, M., Graebsch, A., Breinbauer, R., Hiller, W., Costisella, B., Thomashow, L.S., Mavrodi, D.V. and Blankenfeldt, W. PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. J. Am. Chem. Soc. 130 (2008) 17053–17061. [DOI] [PMID: 19053436]
[EC 5.3.3.17 created 2011]
 
 
EC 6.2.1.32     
Accepted name: anthranilate—CoA ligase
Reaction: ATP + anthranilate + CoA = AMP + diphosphate + anthraniloyl-CoA
For diagram of acridone alkaloid biosynthesis, click here
Glossary: anthraniloyl-CoA = 2-aminobenzoyl-CoA
Other name(s): anthraniloyl coenzyme A synthetase; 2-aminobenzoate—CoA ligase; 2-aminobenzoate—coenzyme A ligase; 2-aminobenzoate coenzyme A ligase
Systematic name: anthranilate:CoA ligase (AMP-forming)
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 112692-58-7
References:
1.  Altenschmidt, U., Eckerskorn, C. and Fuchs, G. Evidence that enzymes of a novel aerobic 2-amino-benzoate metabolism in denitrifying Pseudomonas are coded on a small plasmid. Eur. J. Biochem. 194 (1990) 647–653. [DOI] [PMID: 2176602]
[EC 6.2.1.32 created 1992]
 
 
EC 6.3.2.40     
Accepted name: cyclopeptine synthase
Reaction: 2 ATP + S-adenosyl-L-methionine + anthranilate + L-phenylalanine = cyclopeptine + 2 AMP + 2 diphosphate + S-adenosyl-L-homocysteine
For diagram of cyclopeptine, cyclopenine and viridicatin biosynthesis, click here
Glossary: cyclopeptine = (3S)-3-benzyl-4-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione
4′-methoxycyclopeptine = (3S)-3-(4-methoxybenzyl)-4-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione
Systematic name: S-adenosyl-L-methionine:anthranilate:L-phenylalanine ligase (cyclopeptine-forming)
Comments: Cyclopeptine synthase is the key enzyme of benzodiazepine alkaloid biosynthesis in several fungi species. The enzyme is a non-ribosomal peptide synthase. It is also active with O-methyl-L-tyrosine forming 4′-methoxycyclopeptine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lerbs, W. and Luckner, M. Cyclopeptine synthetase activity in surface cultures of Penicillium cyclopium. J. Basic Microbiol. 25 (1985) 387–391. [DOI] [PMID: 2995633]
2.  Gerlach, M, Schwelle, N., Lerbs, W. and Luckner, M. Enzymatic synthesis of cyclopeptine intermediates in Penicillium cyclopium. Phytochemistry 24 (1985) 1935–1939.
3.  Ishikawa, N., Tanaka, H., Koyama, F., Noguchi, H., Wang, C.C., Hotta, K. and Watanabe, K. Non-heme dioxygenase catalyzes atypical oxidations of 6,7-bicyclic systems to form the 6,6-quinolone core of viridicatin-type fungal alkaloids. Angew. Chem. Int. Ed. Engl. 53 (2014) 12880–12884. [DOI] [PMID: 25251934]
[EC 6.3.2.40 created 2013]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald