The Enzyme Database

Displaying entries 101-150 of 2099.

<< Previous | Next >>    printer_iconPrintable version

EC 2.4.1.27     Relevance: 100%
Accepted name: DNA β-glucosyltransferase
Reaction: Transfers a β-D-glucosyl residue from UDP-α-D-glucose to an hydroxymethylcytosine residue in DNA
Other name(s): T4-HMC-β-glucosyl transferase; T4-β-glucosyl transferase; T4 phage β-glucosyltransferase; UDP glucose-DNA β-glucosyltransferase; uridine diphosphoglucose-deoxyribonucleate β-glucosyltransferase; UDP-glucose:DNA β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:DNA β-D-glucosyltransferase (configuration-inverting)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-14-2
References:
1.  Kornberg, S.R., Zimmerman, S.B. and Kornberg, A. Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J. Biol. Chem. 236 (1961) 1487–1493. [PMID: 13753193]
[EC 2.4.1.27 created 1965]
 
 
EC 2.4.1.355     Relevance: 99.6%
Accepted name: poly(ribitol-phosphate) β-N-acetylglucosaminyltransferase
Reaction: n UDP-N-acetyl-α-D-glucosamine + 4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-(2-N-acetyl-β-D-glucosaminyl-D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarS
Systematic name: UDP-N-acetyl-α-D-glucosamine:4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of poly(ribitol-phosphate) teichoic acids in the cell wall of the bacterium Staphylococcus aureus. This enzyme adds an N-acetyl-β-D-glucosamine to the OH group at the 2 position of the ribitol phosphate units. cf. EC 2.4.1.70 [poly(ribitol-phosphate) α-N-acetylglucosaminyltransferase].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nathenson, S. G., Strominger, J. L. Enzymatic synthesis of N-acetylglucosaminylribitol linkages in teichoic acid from Staphylococcus aureus, strain Copenhagen. J. Biol. Chem. 238 (1963) 3161–3169. [PMID: 14085356]
2.  Brown, S., Xia, G., Luhachack, L.G., Campbell, J., Meredith, T.C., Chen, C., Winstel, V., Gekeler, C., Irazoqui, J.E., Peschel, A. and Walker, S. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl. Acad. Sci. USA 109 (2012) 18909–18914. [DOI] [PMID: 23027967]
3.  Sobhanifar, S., Worrall, L.J., King, D.T., Wasney, G.A., Baumann, L., Gale, R.T., Nosella, M., Brown, E.D., Withers, S.G. and Strynadka, N.C. Structure and mechanism of Staphylococcus aureus TarS, the wall teichoic acid β-glycosyltransferase involved in methicillin resistance. PLoS Pathog. 12:e1006067 (2016). [DOI] [PMID: 27973583]
[EC 2.4.1.355 created 2018]
 
 
EC 3.2.1.152     Relevance: 99.5%
Accepted name: mannosylglycoprotein endo-β-mannosidase
Reaction: Hydrolysis of the α-D-mannosyl-(1→6)-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl sequence of glycoprotein to α-D-mannosyl-(1→6)-D-mannose and N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl sequences
Other name(s): endo-β-mannosidase
Comments: The substrate group is a substituent on N-4 of an asparagine residue in the glycoprotein. The mannose residue at the non-reducing end of the sequence may carry further α-D-mannosyl groups on O-3 or O-6, but such a substituent on O-3 of the β-D-mannosyl group prevents the action of the enzyme. The enzyme was obtained from the lily, Lilium longiflorum.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 141176-95-6
References:
1.  Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M. and Hase, S. Endo-β-mannosidase, a plant enzyme acting on N-glycan. Purification, molecular cloning, and characterization. J. Biol. Chem. 279 (2004) 38555–38562. [DOI] [PMID: 15247239]
2.  Sasaki, A., Yamagishi, M., Mega, T., Norioka, S., Natsuka, S. and Hase, S. Partial purification and characterization of a novel endo-β-mannosidase acting on N-linked sugar chains from Lilium longiflorum thumb. J. Biochem. (Tokyo) 125 (1999) 363–367. [PMID: 9990135]
[EC 3.2.1.152 created 2005]
 
 
EC 2.4.1.391     Relevance: 99.3%
Accepted name: β-1,2-glucosyltransferase
Reaction: [(1→2)-β-D-glucosyl]n + a D-glucoside = [(1→2)-β-D-glucosyl]n-1 + a β-D-glucosyl-(1→2)-D-glucoside
Systematic name: 1,2-β-D-glucan:D-glucoside 2-β-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme, characterized from the bacterium Ignavibacterium album, transfers a glucosyl residue from the non-reducing end of a 1,2-β-D-glucan to a glucose residue of an acceptor molecule, forming a β(1,2) linkage. The donor molecule can be as small as sophorose (which contains two glucosyl residues). The enzyme has a very broad specificity for the acceptor, and can act on various aryl- and alkyl-glucosides. In addition, the accepting glucose unit can be in either α or β configuration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kobayashi, K., Shimizu, H., Tanaka, N., Kuramochi, K., Nakai, H., Nakajima, M. and Taguchi, H. Characterization and structural analyses of a novel glycosyltransferase acting on the β-1,2-glucosidic linkages. J. Biol. Chem. 298:101606 (2022). [DOI] [PMID: 35065074]
[EC 2.4.1.391 created 2022]
 
 
EC 2.3.1.173     Relevance: 99.1%
Accepted name: flavonol-3-O-triglucoside O-coumaroyltransferase
Reaction: 4-coumaroyl-CoA + a flavonol 3-O-[β-D-glucosyl-(1→2)-β-D-glucosyl-(1→2)-β-D-glucoside] = CoA + a flavonol 3-O-[6-(4-coumaroyl)-β-D-glucosyl-(1→2)-β-D-glucosyl-(1→2)-β-D-glucoside]
For diagram of kaempferol-glycoside biosynthesis, click here
Other name(s): 4-coumaroyl-CoA:flavonol-3-O-[β-D-glucosyl-(1→2)-β-D-glucoside] 6′′′-O-4-coumaroyltransferase (incorrect)
Systematic name: 4-coumaroyl-CoA:flavonol 3-O-[β-D-glucosyl-(1→2)-β-D-glucosyl-(1→2)-β-D-glucoside] 6′′′-O-4-coumaroyltransferase
Comments: Acylates kaempferol 3-O-triglucoside on the terminal glucosyl unit, almost certainly at C-6.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 64972-79-8
References:
1.  Saylor, M.H. and Mansell, R.L. Hydroxycinnamoyl:coenzyme A transferase involved in the biosynthesis of kaempferol-3-(p-coumaroyl triglucoside) in Pisum sativum. Z. Naturforsch. 32 (1977) 765–768. [PMID: 145116]
[EC 2.3.1.173 created 2004]
 
 
EC 2.4.1.241     Relevance: 99.1%
Accepted name: digalactosyldiacylglycerol synthase
Reaction: UDP-α-D-galactose + 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol = UDP + 1,2-diacyl-3-O-[α-D-galactosyl-(1→6)-β-D-galactosyl]-sn-glycerol
For diagram of galactosyl diacylglycerol, click here
Other name(s): DGD1; DGD2; DGDG synthase (ambiguous); UDP-galactose-dependent DGDG synthase; UDP-galactose-dependent digalactosyldiacylglycerol synthase; UDP-galactose:MGDG galactosyltransferase; UDP-galactose:3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol 6-α-galactosyltransferase
Systematic name: UDP-α-D-galactose:1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol 6-α-galactosyltransferase
Comments: Requires Mg2+. Diacylglycerol cannot serve as an acceptor molecule for galactosylation as in the reaction catalysed by EC 2.4.1.46, monogalactosyldiacylglyerol synthase. When phosphate is limiting, phospholipids in plant membranes are reduced but these are replaced, at least in part, by the glycolipids digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol [3]. While both DGD1 and DGD2 are increased under phosphate-limiting conditions, DGD2 does not contribute significantly under optimal growth conditions. DGD2 is responsible for the synthesis of DGDG molecular species that are rich in C16 fatty acids at sn-1 of diacylglycerol whereas DGD1 leads to molecular species rich in C18 fatty acids [3]. The enzyme has been localized to the outer side of chloroplast envelope membranes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 69913-00-4
References:
1.  Kelly, A.A. and Dörmann, P. DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chem. 277 (2002) 1166–1173. [DOI] [PMID: 11696551]
2.  Härtel, H., Dörmann, P. and Benning, C. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 97 (2000) 10649–10654. [DOI] [PMID: 10973486]
3.  Kelly, A.A., Froehlich, J.E. and Dörmann, P. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15 (2003) 2694–2706. [DOI] [PMID: 14600212]
4.  Benning, C. and Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280 (2005) 2397–2400. [DOI] [PMID: 15590685]
[EC 2.4.1.241 created 2005]
 
 
EC 3.2.1.21     Relevance: 98.7%
Accepted name: β-glucosidase
Reaction: Hydrolysis of terminal, non-reducing β-D-glucosyl residues with release of β-D-glucose
Other name(s): gentiobiase; cellobiase; emulsin; elaterase; aryl-β-glucosidase; β-D-glucosidase; β-glucoside glucohydrolase; arbutinase; amygdalinase; p-nitrophenyl β-glucosidase; primeverosidase; amygdalase; linamarase; salicilinase; β-1,6-glucosidase
Systematic name: β-D-glucoside glucohydrolase
Comments: Wide specificity for β-D-glucosides. Some examples also hydrolyse one or more of the following: β-D-galactosides, α-L-arabinosides, β-D-xylosides, β-D-fucosides.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-22-3
References:
1.  Chinchetru, M.A., Cabezas, J.A. and Calvo, P. Purification and characterization of a broad specificity β-glucosidase from sheep liver. Int. J. Biochem. 21 (1989) 469–476. [PMID: 2503402]
2.  Conchie, J. β-Glucosidase from rumen liquor. Preparation, assay and kinetics of action. Biochem. J. 58 (1954) 552–560. [PMID: 13230003]
3.  Dahlqvist, A. Pig intestinal β-glucosidase activities. I. Relation to β-galactosidase (lactase). Biochim. Biophys. Acta 50 (1961) 55–61. [DOI] [PMID: 13719334]
4.  Heyworth, R. and Walker, P.G. Almond-emulsin β-D-glucosidase and β-D-galactosidase. Biochem. J. 83 (1962) 331–335. [PMID: 13907157]
5.  Larner, J. Other glucosidases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 4, Academic Press, New York, 1960, pp. 369–378.
6.  Sano, K., Amemura, A. and Harada, T. Purification and properties of a β-1,6-glucosidase from Flavobacterium. Biochim. Biophys. Acta 377 (1975) 410–420. [DOI] [PMID: 235305]
[EC 3.2.1.21 created 1961]
 
 
EC 2.4.1.288     Relevance: 98.3%
Accepted name: galactofuranosylgalactofuranosylrhamnosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,5/1,6-galactofuranosyltransferase
Reaction: 28 UDP-α-D-galactofuranose + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol = 28 UDP + [β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→6)]14-β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of arabinofuranogalactofuranan biosynthesis, click here
Other name(s): GlfT2
Systematic name: UDP-α-D-galactofuranose:β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol 4-β/5-β-D-galactofuranosyltransferase
Comments: Isolated from Mycobacterium tuberculosis. The enzyme adds approximately twenty-eight galactofuranosyl residues with alternating 1→5 and 1→6 links forming a galactan domain with approximately thirty galactofuranosyl residues. Involved in the formation of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rose, N.L., Zheng, R.B., Pearcey, J., Zhou, R., Completo, G.C. and Lowary, T.L. Development of a coupled spectrophotometric assay for GlfT2, a bifunctional mycobacterial galactofuranosyltransferase. Carbohydr. Res. 343 (2008) 2130–2139. [DOI] [PMID: 18423586]
2.  May, J.F., Splain, R.A., Brotschi, C. and Kiessling, L.L. A tethering mechanism for length control in a processive carbohydrate polymerization. Proc. Natl. Acad. Sci. USA 106 (2009) 11851–11856. [DOI] [PMID: 19571009]
3.  Wheatley, R.W., Zheng, R.B., Richards, M.R., Lowary, T.L. and Ng, K.K. Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial Arabinogalactan. J. Biol. Chem. 287 (2012) 28132–28143. [DOI] [PMID: 22707726]
[EC 2.4.1.288 created 2012]
 
 
EC 2.3.1.213     Relevance: 97.8%
Accepted name: cyanidin 3-O-(6-O-glucosyl-2-O-xylosylgalactoside) 6′′′-O-hydroxycinnamoyltransferase
Reaction: 1-O-(4-hydroxycinnamoyl)-β-D-glucose + cyanidin 3-O-(6-O-β-D-glucosyl-2-O-β-D-xylosyl-β-D-galactoside) = β-D-glucose + cyanidin 3-O-[6-O-(6-O-4-hydroxycinnamoyl-β-D-glucosyl)-2-O-β-D-xylosyl-β-D-galactoside]
For diagram of cyanidin galactoside biosynthesis, click here
Glossary: 1-O-(4-hydroxycinnamoyl)-β-D-glucose = 1-O-(4-coumaroyl)-β-D-glucose
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): 1-O-(4-hydroxycinnamoyl)-β-D-glucose:cyanidin 3-O-(2"-O-xylosyl-6"-O-glucosylgalactoside) 6′′′-O-(4-hydroxycinnamoyl)transferase
Systematic name: 1-O-(4-hydroxycinnamoyl)-β-D-glucose:cyanidin 3-O-(6-O-β-D-glucosyl-2-O-β-D-xylosyl-β-D-galactoside) 6′′′-O-(4-hydroxycinnamoyl)transferase
Comments: Isolated from the plant Daucus carota (Afghan cultivar carrot). In addition to 1-O-(4-hydroxycinnamoyl)-β-D-glucose, the enzyme can use the 1-O-sinapoyl- and 1-O-feruloyl- derivatives of β-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gläßgen, W.E. and Seitz, H.U. Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta 186 (1992) 582–585. [PMID: 24186789]
[EC 2.3.1.213 created 2013]
 
 
EC 2.4.1.222     Relevance: 97.5%
Accepted name: O-fucosylpeptide 3-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + [protein with EGF-like domain]-3-O-(α-L-fucosyl)-(L-serine/L-threonine) = UDP + [protein with EGF-like domain]-3-O-[N-acetyl-β-D-glucosaminyl-(1→3)-α-L-fucosyl]-(L-serine/L-threonine)
Glossary: EGF = epidermal growth factor
EGF-like domain = an evolutionary conserved domain containing 30 to 40 amino-acid residues first described from epidermal growth factor
Other name(s): O-fucosylpeptide β-1,3-N-acetylglucosaminyltransferase; fringe; UDP-D-GlcNAc:O-L-fucosylpeptide 3-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:[protein with EGF-like domain]-3-O-(α-L-fucosyl)-(L-serine/L-threonine) 3-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in animals and plants, is involved in the biosynthesis of the tetrasaccharides α-Neu5Ac-(2→3)-β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-α-L-Fuc and α-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-α-L-Fuc, which are attached to L-Ser or L-Thr residues within the sequence Cys-Xaa-Xaa-Gly-Gly-Ser/Thr-Cys in EGF-like domains in Notch and Factor-X proteins, respectively. The substrate is provided by EC 2.4.1.221, peptide-O-fucosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 299203-70-6
References:
1.  Moloney, D.J., Panin, V.M., Johnston, S.H., Chen, J., Shao, L., Wilson, R., Wang, Y., Stanley, P., Irvine, K.D., Haltiwanger, R.S. and Vogt, T.F. Fringe is a glycosyltransferase that modifies Notch. Nature 406 (2000) 369–375. [DOI] [PMID: 10935626]
2.  Bruckner, K., Perez, L., Clausen, H. and Cohen, S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406 (2000) 411–415. [DOI] [PMID: 10935637]
3.  Rampal, R., Li, A.S., Moloney, D.J., Georgiou, S.A., Luther, K.B., Nita-Lazar, A. and Haltiwanger, R.S. Lunatic fringe, manic fringe, and radical fringe recognize similar specificity determinants in O-fucosylated epidermal growth factor-like repeats. J. Biol. Chem. 280 (2005) 42454–42463. [DOI] [PMID: 16221665]
[EC 2.4.1.222 created 2002, modified 2022]
 
 
EC 2.4.1.256     Relevance: 97%
Accepted name: dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol α-1,2-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = dolichyl phosphate + α-D-Glc-(1→2)-α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG10; Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol α-1,2-glucosyltransferase (configuration-retaining)
Comments: This eukaryotic enzyme performs the final step in the synthesis of the lipid-linked oligosaccharide, attaching D-glucose in an α-1,2-linkage to the outermost D-glucose in the long branch. The lipid-linked oligosaccharide is involved in N-linked protein glycosylation of selected asparagine residues of nascent polypeptide chains in eukaryotic cells.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Burda, P. and Aebi, M. The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8 (1998) 455–462. [DOI] [PMID: 9597543]
[EC 2.4.1.256 created 2011, modified 2012]
 
 
EC 3.2.1.164     Relevance: 95.7%
Accepted name: galactan endo-1,6-β-galactosidase
Reaction: Endohydrolysis of (1→6)-β-D-galactosidic linkages in arabinogalactan proteins and (1→3):(1→6)-β-galactans to yield galactose and (1→6)-β-galactobiose as the final products
Other name(s): endo-1,6-β-galactanase
Systematic name: endo-β-(1→6)-galactanase
Comments: The enzyme specifically hydrolyses 1,6-β-D-galactooligosaccharides with a degree of polymerization (DP) higher than 3, and their acidic derivatives with 4-O-methylglucosyluronate or glucosyluronate groups at the non-reducing terminals [2]. 1,3-β-D- and 1,4-β-D-galactosyl residues cannot act as substrates. The enzyme can also hydrolyse α-L-arabinofuranosidase-treated arabinogalactan protein (AGP) extracted from radish roots [2,3]. AGPs are thought to be involved in many physiological events, such as cell division, cell expansion and cell death [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brillouet, J.-M., Williams, P. and Moutounet, M. Purification and some properties of a novel endo-β-(1→6)-D-galactanase from Aspergillus niger. Agric. Biol. Chem. 55 (1991) 1565–1571.
2.  Okemoto, K., Uekita, T., Tsumuraya, Y., Hashimoto, Y. and Kasama, T. Purification and characterization of an endo-β-(1→6)-galactanase from Trichoderma viride. Carbohydr. Res. 338 (2003) 219–230. [DOI] [PMID: 12543554]
3.  Kotake, T., Kaneko, S., Kubomoto, A., Haque, M.A., Kobayashi, H. and Tsumuraya, Y. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-β-(1→6)-galactanase gene. Biochem. J. 377 (2004) 749–755. [DOI] [PMID: 14565843]
[EC 3.2.1.164 created 2007]
 
 
EC 3.2.1.123     Relevance: 95.6%
Accepted name: endoglycosylceramidase
Reaction: oligoglycosylglucosyl-(1↔1)-ceramide + H2O = ceramide + oligoglycosylglucose
Other name(s): endoglycoceramidase; EGCase; glycosyl-N-acetyl-sphingosine 1,1-β-D-glucanohydrolase; oligoglycosylglucosylceramide glycohydrolase; oligoglycosylglucosyl(1↔1)ceramide glycohydrolase
Systematic name: oligoglycosylglucosyl-(1↔1)-ceramide glycohydrolase
Comments: An enzyme from Rhodococcus sp. that degrades various acidic and neutral glycosphingolipids to oligosaccharides and ceramides, by cleaving a glucosyl bond. Does not act on monoglycosylceramides. cf. EC 3.2.1.62 glycosylceramidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 105503-61-5
References:
1.  Ito, M. and Yamagata, T. A novel glycosphingolipid-degrading enzyme cleaves the linkage between the oligosaccharide and ceramide of neutral and acidic glycosphingolipids. J. Biol. Chem. 261 (1986) 14278–14282. [PMID: 3771534]
[EC 3.2.1.123 created 1989]
 
 
EC 2.4.1.392     Relevance: 95.5%
Accepted name: 3-O-β-D-glucopyranosyl-β-D-glucuronide phosphorylase
Reaction: a 3-O-β-D-glucosyl-β-D-glucuronoside + phosphate = a β-D-glucuronoside + α-D-glucopyranose 1-phosphate
Other name(s): PBOR_13355 (locus name)
Systematic name: 3-O-β-D-glucopyranosyl-β-D-glucuronide:phosphate α-D-glucosyltransferase
Comments: The enzyme, characterized from the bacterium Paenibacillus borealis, catalyses a reversible reaction, transferring a glucosyl residue attached by a β(1,3) linkage to a D-glucuronate residue (either free or as a part of a β-D-glucuronide) to a free phosphate, generating α-D-glucopyranose 1-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Isono, N., Mizutani, E., Hayashida, H., Katsuzaki, H. and Saburi, W. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-D-glucopyranosyl β-D-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis. Biochem. Biophys. Res. Commun. 625 (2022) 60–65. [DOI] [PMID: 35947916]
[EC 2.4.1.392 created 2022]
 
 
EC 2.4.1.180     Relevance: 95.3%
Accepted name: lipopolysaccharide N-acetylmannosaminouronosyltransferase
Reaction: UDP-N-acetyl-α-D-mannosaminouronate + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + N-acetyl-β-D-mannosaminouronyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Glossary: N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = lipid I = GlcNAc-pyrophosphorylundecaprenol = ditrans,octacis-undecaprenyl-N-acetyl-α-D-glucosaminyl diphosphate
Other name(s): ManNAcA transferase; uridine diphosphoacetylmannosaminuronate-acetylglucosaminylpyrophosphorylundecaprenol acetylmannosaminuronosyltransferase; UDP-N-acetyl-β-D-mannosaminouronate:lipid I N-acetyl-β-D-mannosaminouronosyltransferase (incorrect)
Systematic name: UDP-N-acetyl-α-D-mannosaminouronate:lipid I N-acetyl-α-D-mannosaminouronosyltransferase
Comments: Involved in the biosynthesis of common antigen in Enterobacteriaceae.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 113478-30-1
References:
1.  Barr, K., Ward, S., Meier-Dieter, U., Mayer, H. and Rick, P.D. Characterization of an Escherichia coli rff mutant defective in transfer of N-acetylmannosaminuronic acid (ManNAcA) from UDP-ManNAcA to a lipid-linked intermediate involved in enterobacterial common antigen synthesis. J. Bacteriol. 170 (1988) 228–233. [DOI] [PMID: 3275612]
[EC 2.4.1.180 created 1990, modified 2011]
 
 
EC 5.1.3.28     Relevance: 95%
Accepted name: UDP-N-acetyl-L-fucosamine synthase
Reaction: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-fucosamine
For diagram of UDP-N-acetyl-β-L-fucosamine biosynthesis, click here
Glossary: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-pneumosamine
Other name(s): WbjD; Cap5G
Systematic name: UDP-2-acetamido-2,6-dideoxy-β-L-talose 2-epimerase
Comments: Isolated from the bacteria Pseudomonas aeruginosa and Staphylococcus aureus. Involved in bacterial polysaccharide biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kneidinger, B., O'Riordan, K., Li, J., Brisson, J.R., Lee, J.C. and Lam, J.S. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J. Biol. Chem. 278 (2003) 3615–3627. [DOI] [PMID: 12464616]
2.  Mulrooney, E.F., Poon, K.K., McNally, D.J., Brisson, J.R. and Lam, J.S. Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J. Biol. Chem. 280 (2005) 19535–19542. [DOI] [PMID: 15778500]
[EC 5.1.3.28 created 2014]
 
 
EC 2.4.1.82     Relevance: 94.8%
Accepted name: galactinol—sucrose galactosyltransferase
Reaction: α-D-galactosyl-(1→3)-1D-myo-inositol + sucrose = myo-inositol + raffinose
For diagram of stachyose biosynthesis, click here
Glossary: raffinose = β-D-fructofuranosyl α-D-galactopyranosyl-(1→6)-α-D-glucopyranoside
Other name(s): 1-α-D-galactosyl-myo-inositol:sucrose 6-α-D-galactosyltransferase; α-D-galactosyl-(1→3)-myo-inositol:sucrose 6-α-D-galactosyltransferase; raffinose synthase; RafS
Systematic name: α-D-galactosyl-(1→3)-1D-myo-inositol:sucrose 6-α-D-galactosyltransferase
Comments: 4-Nitrophenyl α-D-galactopyranoside can also act as donor. The enzyme also catalyses an exchange reaction between raffinose and sucrose (cf. EC 2.4.1.123, inositol 3-α-galactosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 62213-45-0
References:
1.  Lehle, L. and Tanner, W. The function of myo-inositol in the biosynthesis of raffinose. Purification and characterization of galactinol:sucrose 6-galactosyltransferase from Vicia faba seeds. Eur. J. Biochem. 38 (1973) 103–110. [DOI] [PMID: 4774118]
2.  Lehle, L., Tanner, W. and Kandler, O. Myo-inositol, a cofactor in the biosynthesis of raffinose. Hoppe-Seyler's Z. Physiol. Chem. 351 (1970) 1494–1498. [PMID: 5491608]
[EC 2.4.1.82 created 1976, modified 2003]
 
 
EC 2.4.1.133     Relevance: 94.8%
Accepted name: xylosylprotein 4-β-galactosyltransferase
Reaction: UDP-α-D-galactose + [protein]-3-O-(β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
For diagram of heparan and chondroitin biosynthesis (early stages), click here
Other name(s): UDP-D-galactose:D-xylose galactosyltransferase; UDP-D-galactose:xylose galactosyltransferase; galactosyltransferase I; uridine diphosphogalactose-xylose galactosyltransferase; UDP-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosyl-[protein] 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[protein]-3-O-(β-D-xylosyl)-L-serine 4-β-D-galactosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52227-72-2
References:
1.  Schwartz, N.B. and Roden, L. Biosynthesis of chondroitin sulfate. Solubilization of chondroitin sulfate glycosyltransferases and partial purification of uridine diphosphate-D-galactose:D-xylose galactosyltransferase. J. Biol. Chem. 250 (1975) 5200–5207. [PMID: 1150655]
2.  Okajima, T., Yoshida, K., Kondo, T. and Furukawa, K. Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 274 (1999) 22915–22918. [DOI] [PMID: 10438455]
[EC 2.4.1.133 created 1984, modified 2002]
 
 
EC 2.3.1.202     Relevance: 94.5%
Accepted name: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine N-acetyltransferase
Reaction: acetyl-CoA + UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine = CoA + UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose
Other name(s): PseH
Systematic name: acetyl-CoA:UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine N-acetyltransferase
Comments: Isolated from Helicobacter pylori. The enzyme is involved in the biosynthesis of pseudaminic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schoenhofen, I.C., McNally, D.J., Brisson, J.R. and Logan, S.M. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16 (2006) 8C–14C. [DOI] [PMID: 16751642]
[EC 2.3.1.202 created 2012]
 
 
EC 2.4.1.23     Relevance: 94.4%
Accepted name: sphingosine β-galactosyltransferase
Reaction: UDP-α-D-galactose + sphingosine = UDP + psychosine
Other name(s): psychosine—UDP galactosyltransferase; galactosyl-sphingosine transferase; psychosine-uridine diphosphate galactosyltransferase; UDP-galactose:sphingosine O-galactosyl transferase; uridine diphosphogalactose-sphingosine β-galactosyltransferase; UDP-galactose:sphingosine 1-β-galactotransferase; UDP-galactose:sphingosine 1-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:sphingosine 1-β-galactosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9032-90-0
References:
1.  Cleland, W.W. and Kennedy, E.P. The enzymatic synthesis of psychosine. J. Biol. Chem. 235 (1960) 45–51. [PMID: 13810623]
[EC 2.4.1.23 created 1965]
 
 
EC 2.4.1.388     Relevance: 94.3%
Accepted name: glucosylgalactose phosphorylase
Reaction: β-D-glucosyl-(1→4)-D-galactose + phosphate = α-D-glucopyranose 1-phosphate + D-galactopyranose
Other name(s): 4-O-β-D-glucosyl-D-galactose phosphorylase
Systematic name: β-D-glucosyl-(1→4)-D-galactose:phosphate α-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme from the bacterium Paenibacillus polymyxa belongs to glycoside hydrolase family 94. It has a much lower activity with 4-O-β-D-glucosyl-L-arabinose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  De Doncker, M., De Graeve, C., Franceus, J., Beerens, K., Kren, V., Pelantova, H., Vercauteren, R. and Desmet, T. Exploration of GH94 sequence space for enzyme discovery reveals a novel glucosylgalactose phosphorylase specificity. ChemBioChem (2021) . [DOI] [PMID: 34541742]
[EC 2.4.1.388 created 2022]
 
 
EC 2.4.1.80     Relevance: 94.3%
Accepted name: ceramide glucosyltransferase
Reaction: UDP-α-D-glucose + an N-acylsphingosine = UDP + a β-D-glucosyl-N-acylsphingosine
For diagram of glycolipid biosynthesis, click here
Other name(s): UDP-glucose:ceramide glucosyltransferase; ceramide:UDP-Glc glucosyltransferase; uridine diphosphoglucose-ceramide glucosyltransferase; ceramide:UDP-glucose glucosyltransferase; glucosylceramide synthase; UDP-glucose:N-acylsphingosine D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-acylsphingosine β-D-glucosyltransferase (configuration-inverting)
Comments: Sphingosine and dihydrosphingosine can also act as acceptors; CDP-glucose can act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37237-44-8
References:
1.  Basu, S., Kaufman, B. and Roseman, S. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J. Biol. Chem. 248 (1973) 1388–1394. [PMID: 4631392]
[EC 2.4.1.80 created 1976]
 
 
EC 3.2.2.11     Relevance: 93.7%
Accepted name: β-aspartyl-N-acetylglucosaminidase
Reaction: 1-β-aspartyl-N-acetyl-D-glucosaminylamine + H2O = L-asparagine + N-acetyl-D-glucosamine
Other name(s): β-aspartylacetylglucosaminidase
Systematic name: 1-β-aspartyl-N-acetyl-D-glucosaminylamine L-asparaginohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9027-31-0
References:
1.  Eylar, E.H. and Murakami, M. β-Aspartyl-N-acetylglucosaminidase from epididymis. Methods Enzymol. 8 (1966) 597–600.
[EC 3.2.2.11 created 1972]
 
 
EC 2.4.1.227     Relevance: 93.6%
Accepted name: undecaprenyldiphospho-muramoylpentapeptide β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol = UDP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
For diagram of peptidoglycan biosynthesis (part 2), click here
Other name(s): MurG transferase; UDP-N-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol β-1,4-N-acetylglucosaminlytransferase; UDP-N-acetyl-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol 4-β-N-acetylglucosaminlytransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol 4-β-N-acetylglucosaminlytransferase (configuration-inverting)
Comments: The enzyme also works when the lysine residue is replaced by meso-2,6-diaminoheptanedioate (meso-2,6-diaminopimelate, A2pm) combined with adjacent residues through its L-centre, as it is in Gram-negative and some Gram-positive organisms. The undecaprenol involved is ditrans,octacis-undecaprenol (for definitions, click here).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60976-26-3
References:
1.  van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18 (2001) 503–519. [PMID: 11699883]
[EC 2.4.1.227 created 2002]
 
 
EC 2.4.1.97     Relevance: 93.3%
Accepted name: 1,3-β-D-glucan phosphorylase
Reaction: [(1→3)-β-D-glucosyl]n + phosphate = [(1→3)-β-D-glucosyl]n-1 + α-D-glucose 1-phosphate
Other name(s): laminarin phosphoryltransferase; 1,3-β-D-glucan:orthophosphate glucosyltransferase; 1,3-β-D-glucan:phosphate α-D-glucosyltransferase
Systematic name: (1→3)-β-D-glucan:phosphate α-D-glucosyltransferase
Comments: Acts on a range of β-1,3-oligoglucans, and on glucans of laminarin type. Different from EC 2.4.1.30 (1,3-β-oligoglucan phosphorylase) and EC 2.4.1.31 (laminaribiose phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37340-31-1
References:
1.  Albrecht, G.J. and Kauss, H. Purification, crystallization and properties of a β-(1→3)-glucan phosphorylase from Ochromonas malhamensis. Phytochemistry 10 (1971) 1293–1298.
[EC 2.4.1.97 created 1978]
 
 
EC 2.4.1.335     Relevance: 93.2%
Accepted name: dolichyl N-acetyl-α-D-glucosaminyl phosphate 3-β-D-2,3-diacetamido-2,3-dideoxy-β-D-glucuronosyltransferase
Reaction: UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate + an archaeal dolichyl N-acetyl-α-D-glucosaminyl phosphate = UDP + an archaeal dolichyl 3-O-(2,3-diacetamido-2,3-dideoxy-β-D-glucuronsyl)-N-acetyl-α-D-glucosaminyl phosphate
Other name(s): AglC; UDP-Glc-2,3-diNAcA glycosyltransferase
Systematic name: UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate:dolichyl N-acetyl-α-D-glucosaminyl-phosphate 3-β-D-2,3-diacetamido-2,3-dideoxy-β-D-glucuronosyltransferase
Comments: The enzyme, characterized from the methanogenic archaeon Methanococcus voltae, participates in the N-glycosylation of proteins. Dolichol used by archaea is different from that used by eukaryotes. It is much shorter (C55-C60), it is α,ω-saturated and it may have additional unsaturated positions in the chain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Larkin, A., Chang, M.M., Whitworth, G.E. and Imperiali, B. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Nat. Chem. Biol. 9 (2013) 367–373. [DOI] [PMID: 23624439]
[EC 2.4.1.335 created 2015]
 
 
EC 2.4.1.225     Relevance: 93.2%
Accepted name: N-acetylglucosaminyl-proteoglycan 4-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan = UDP + β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan
For diagram of the later stages of heparan biosynthesis, click here
Other name(s): N-acetylglucosaminylproteoglycan β-1,4-glucuronyltransferase; heparan glucuronyltransferase II
Systematic name: UDP-α-D-glucuronate:N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 4-β-glucuronosyltransferase
Comments: Involved in the biosynthesis of heparin and heparan sulfate. Some forms of the human enzyme (particularly the enzyme complex encoded by the EXT1 and EXT2 genes) act as bifunctional glycosyltransferases, which also have the glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase (EC 2.4.1.224) activity required for the synthesis of the heparan sulfate disaccharide repeats.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 145539-84-0
References:
1.  Senay, C., Lind, T., Muguruma, K., Tone, Y., Kitagawa, H., Sugahara, K., Lidholt, K., Lindahl, U. and Kusche-Gullberg, M. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1 (2000) 282–286. [DOI] [PMID: 11256613]
2.  Lind, T., Tufaro, F., McCormick, C., Lindahl, U. and Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273 (1998) 26265–26268. [DOI] [PMID: 9756849]
[EC 2.4.1.225 created 2002]
 
 
EC 2.4.1.320     Relevance: 92.7%
Accepted name: 1,4-β-mannosyl-N-acetylglucosamine phosphorylase
Reaction: 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine + phosphate = N-acetyl-D-glucosamine + α-D-mannose 1-phosphate
Other name(s): BT1033
Systematic name: 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase
Comments: The enzyme isolated from the anaerobic bacterium Bacteroides thetaiotaomicron is involved in the degradation of host-derived N-glycans.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nihira, T., Suzuki, E., Kitaoka, M., Nishimoto, M., Ohtsubo, K. and Nakai, H. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. J. Biol. Chem. 288 (2013) 27366–27374. [DOI] [PMID: 23943617]
[EC 2.4.1.320 created 2014]
 
 
EC 3.5.1.21     Relevance: 92.6%
Accepted name: N-acetyl-β-alanine deacetylase
Reaction: N-acetyl-β-alanine + H2O = acetate + β-alanine
Systematic name: N-acetyl-β-alanine amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37289-04-6
References:
1.  Fujimoto, D., Koyama, T. and Tamiya, N. N-Acetyl-β-alanine deacetylase in hog kidney. Biochim. Biophys. Acta 167 (1968) 407–413.
[EC 3.5.1.21 created 1972]
 
 
EC 2.4.2.42     Relevance: 92.5%
Accepted name: UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine = UDP + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine
Other name(s): β-glucoside α-1,3-xylosyltransferase; UDP-α-D-xylose:β-D-glucoside 3-α-D-xylosyltransferase; GXYLT1 (gene name); GXYLT2 (gene name)
Systematic name: UDP-α-D-xylose:[protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine 3-α-D-xylosyltransferase (configuration-retaining)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains [2,3]. When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Omichi, K., Aoki, K., Minamida, S. and Hase, S. Presence of UDP-D-xylose: β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α 1-3Glc β-Ser structure of glycoproteins in the human hepatoma cell line HepG2. Eur. J. Biochem. 245 (1997) 143–146. [DOI] [PMID: 9128735]
2.  Ishimizu, T., Sano, K., Uchida, T., Teshima, H., Omichi, K., Hojo, H., Nakahara, Y. and Hase, S. Purification and substrate specificity of UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α1-3Xyl α1-3Glc β1-O-Ser on epidermal growth factor-like domains. J. Biochem. 141 (2007) 593–600. [DOI] [PMID: 17317689]
3.  Sethi, M.K., Buettner, F.F., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R. and Bakker, H. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J. Biol. Chem. 285 (2010) 1582–1586. [PMID: 19940119]
[EC 2.4.2.42 created 2010, modified 2020]
 
 
EC 3.2.1.149     Relevance: 92%
Accepted name: β-primeverosidase
Reaction: a 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside + H2O = 6-O-(β-D-xylopyranosyl)-β-D-glucopyranose + an alcohol
Glossary: primeverose = 6-O-(β-D-xylopyranosyl)-D-glucose
vicianose = 6-O-(α-L-arabinopyranosyl)-D-glucose
Systematic name: 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside 6-O-(β-D-xylosyl)-β-D-glucohydrolase
Comments: The enzyme is responsible for the formation of the alcoholic aroma in oolong and black tea. In addition to β-primeverosides [i.e. 6-O-(β-D-xylopyranosyl)-β-D-glucopyranosides], it also hydrolyses 6-O-(β-D-apiofuranosyl)-β-D-glucopyranosides and, less rapidly, β-vicianosides and 6-O-(α-L-arabinofuranosyl)-β-D-glucopyranosides, but not β-glucosides. Geranyl-, linaloyl-, benzyl- and p-nitrophenol glycosides are all hydrolysed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 884593-92-4
References:
1.  Ijima, Y., Ogawa, K., Watanabe, N., Usui, T., Ohnishi-Kameyama, M., Nagata, T. and Sakata, K. Characterization of β-primeverosidase, being concerned with alcoholic aroma formation in tea leaves to be processed into black tea, and preliminary observations on its substrate specificity. J. Agric. Food Chem. 46 (1998) 1712–1718.
2.  Ogawa, K., Ijima, Y., Guo, W., Watanabe, N., Usui, T., Dong, S., Tong, Q. and Sakata, K. Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves (cv. Shuxian) to be processed to oolong tea. J. Agric. Food Chem. 45 (1997) 877–882.
[EC 3.2.1.149 created 2001]
 
 
EC 2.4.1.188     Relevance: 91.4%
Accepted name: N-acetylglucosaminyldiphosphoundecaprenol glucosyltransferase
Reaction: UDP-α-D-glucose + N-acetyl-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-glucosyl-(1→4)-N-acetyl-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): UDP-D-glucose:N-acetylglucosaminyl pyrophosphorylundecaprenol glucosyltransferase; uridine diphosphoglucose-acetylglucosaminylpyrophosphorylundecaprenol glucosyltransferase; UDP-glucose:N-acetyl-D-glucosaminyldiphosphoundecaprenol 4-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-acetyl-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 4-β-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 118731-83-2
References:
1.  Kumita, K., Murazumi, N., Arasaki, Y. and Ito, E. Solubilization and properties of UDP-D-glucose:N-acetylglucosaminyl pyrophosphorylundecaprenol glucosyltransferase from Bacillus coagulans AHU 1366 membranes. J. Biochem. (Tokyo) 104 (1988) 985–988. [PMID: 2977388]
[EC 2.4.1.188 created 1992]
 
 
EC 2.4.1.67     Relevance: 91.3%
Accepted name: galactinol—raffinose galactosyltransferase
Reaction: α-D-galactosyl-(1→3)-1D-myo-inositol + raffinose = myo-inositol + stachyose
For diagram of stachyose biosynthesis, click here
Glossary: raffinose = β-D-fructofuranosyl α-D-galactopyranosyl-(1→6)-α-D-glucopyranoside
Other name(s): galactinol-raffinose galactosyltransferase; stachyose synthetase; α-D-galactosyl-(1→3)-myo-inositol:raffinose galactosyltransferase
Systematic name: α-D-galactosyl-(1→3)-1D-myo-inositol:raffinose galactosyltransferase
Comments: This enzyme also catalyses galactosyl transfer from stachyose to raffinose (shown by labelling) [4]. For synthesis of the substrate, see EC 2.4.1.123, inositol 3-α-galactosyltransferase. See also EC 2.4.1.82, galactinol—sucrose galactosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-70-6
References:
1.  Tanner, W. Die Biosynthese der Stachyose. Ber. Dtsch. Bot. Ges. 80 (1967) 111.
2.  Tanner, W. and Kandler, O. Myo-inositol, a cofactor in the biosynthesis of stachyose. Eur. J. Biochem. 4 (1968) 233–239. [DOI] [PMID: 5655499]
3.  Lehle, L. and Tanner, W. The function of myo-inositol in the biosynthesis of raffinose. Purification and characterization of galactinol:sucrose 6-galactosyltransferase from Vicia faba seeds. Eur. J. Biochem. 38 (1973) 103–110. [DOI] [PMID: 4774118]
4.  Kandler, O. and Hopf, H. Occurrence, metabolism and function of oligosaccharides. In: Preiss, J. (Ed.), The Biochemistry of Plant, vol. 3, Academic Press, New York, 1980, pp. 221–270.
[EC 2.4.1.67 created 1972, modified 2003]
 
 
EC 2.3.1.309     Relevance: 91.1%
Accepted name: [β-tubulin]-L-lysine N-acetyltransferase
Reaction: acetyl-CoA + a [β-tubulin]-L-lysine = CoA + a [β-tubulin]-N6-acetyl-L-lysine
Other name(s): San; NatE; NAA50 (gene name)
Systematic name: acetyl-CoA:[β-tubulin]-L-lysine N6-acetyltransferase
Comments: The enzyme acetylates L-lysine at position 252 of β-tubulin, which is located at the interface of α/β-tubulin heterodimers and interacts with the phosphate group of the α-tubulin-bound GTP. The acetylation is thought to attenuate tubulin incorporation into microtubules. The enzyme catalysing this activity (NAA50) also catalyses the acetylation of certain N-terminal methionyl residues. That activity is classified as EC 2.3.1.258, N-terminal methionine Nα-acetyltransferase NatE. cf. EC 2.3.1.108, α-tubulin N-acetyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chu, C.W., Hou, F., Zhang, J., Phu, L., Loktev, A.V., Kirkpatrick, D.S., Jackson, P.K., Zhao, Y. and Zou, H. A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol. Biol. Cell 22 (2011) 448–456. [DOI] [PMID: 21177827]
[EC 2.3.1.309 created 2022]
 
 
EC 2.4.1.333     Relevance: 90.7%
Accepted name: 1,2-β-oligoglucan phosphorylase
Reaction: [(1→2)-β-D-glucosyl]n + phosphate = [(1→2)-β-D-glucosyl]n-1 + α-D-glucose 1-phosphate
Systematic name: 1,2-β-D-glucan:phosphate α-D-glucosyltransferase
Comments: The enzyme has been isolated from the bacterium Listeria innocua. It catalyses the reversible phosphorolysis of β-(1→2)-D-glucans. The minimum length of the substrate for the phosphorolytic reaction is 3 D-glucose units. In the synthetic reaction starting from sophorose and α-D-glucose 1-phosphate the average polymerisation degree is 39.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nakajima, M., Toyoizumi, H., Abe, K., Nakai, H., Taguchi, H. and Kitaoka, M. 1,2-β-Oligoglucan phosphorylase from Listeria innocua. PLoS One 9:e92353 (2014). [DOI] [PMID: 24647662]
[EC 2.4.1.333 created 2014]
 
 
EC 2.4.1.271     Relevance: 90.7%
Accepted name: crocetin glucosyltransferase
Reaction: (1) UDP-α-D-glucose + crocetin = UDP + β-D-glucosyl crocetin
(2) UDP-α-D-glucose + β-D-glucosyl crocetin = UDP + bis(β-D-glucosyl) crocetin
(3) UDP-α-D-glucose + β-D-gentiobiosyl crocetin = UDP + β-D-gentiobiosyl β-D-glucosyl crocetin
For diagram of crocin biosynthesis, click here
Other name(s): crocetin GTase; UGTCs2; UGT75L6; UDP-glucose:crocetin glucosyltransferase; UDP-glucose:crocetin 8-O-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:crocetin 8-O-D-glucosyltransferase
Comments: In the plants Crocus sativus and Gardenia jasminoides this enzyme esterifies a free carboxyl group of crocetin and some crocetin glycosyl esters. The enzyme from Gardenia can also form glucosyl esters with 4-coumarate, caffeate and ferulate [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Côté, F., Cormier, F., Dufresne, C. and Willemot, C. Properties of a glucosyltransferase involved in crocin synthesis. Plant Sci. 153 (2000) 55–63.
2.  Moraga, A.R., Nohales, P.F., Perez, J.A. and Gomez-Gomez, L. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219 (2004) 955–966. [DOI] [PMID: 15605174]
3.  Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A. and Mizukami, H. UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett. 586 (2012) 1055–1061. [DOI] [PMID: 22569263]
[EC 2.4.1.271 created 2011]
 
 
EC 2.4.1.240     Relevance: 90.3%
Accepted name: flavonol-3-O-glycoside glucosyltransferase
Reaction: UDP-glucose + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucoside = UDP + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucosyl-(1→2)-β-D-glucoside
For diagram of kaempferol-glycoside biosynthesis, click here and for diagram of the biosynthesis of quercetin 3-O-triglucoside, click here
Systematic name: UDP-glucose:flavonol-3-O-β-D-glucosyl-(1→2)-β-D-glucoside 2′′′-O-β-D-glucosyltransferase
Comments: One of three specific glucosyltransferases in pea (Pisum sativum) thatsuccessively add a β-D-glucosyl group first to O-3 of kaempferol, and then to O-2 of the previously added glucosyl group giving the 3-O-sophoroside and then the 3-O-sophorotrioside (see also EC 2.4.1.91 flavonol 3-O-glucosyltransferase, and EC 2.4.1.239 flavonol-3-O-glucoside glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jourdan, P.S. and Mansell, R.L. Isolation and partial characterization of three glucosyl transferases involved in the biosynthesis of flavonol triglucosides in Pisum sativum L. Arch. Biochem. Biophys. 213 (1982) 434–443. [DOI] [PMID: 6462109]
[EC 2.4.1.240 created 2004]
 
 
EC 2.3.1.141     Relevance: 90.2%
Accepted name: galactosylacylglycerol O-acyltransferase
Reaction: an acyl-[acyl-carrier protein] + a 2-acyl-3-O-(β-D-galactosyl)-sn-glycerol = an [acyl-carrier protein] + a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol
Other name(s): acyl-acyl-carrier protein: lysomonogalactosyldiacylglycerol acyltransferase; acyl-ACP:lyso-MGDG acyltransferase; acyl-[acyl-carrier-protein]:D-galactosylacylglycerol O-acyltransferase
Systematic name: acyl-[acyl-carrier protein]:2-acyl-3-O-(β-D-galactosyl)-sn-glycerol O-acyltransferase
Comments: Transfers long-chain acyl groups to the sn-1 position of the glycerol residue.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119129-68-9
References:
1.  Chen, H.-H., Wickrema, A. and Jaworski, J.G. Acyl-acyl-carrier protein: lysomonogalactosyldiacylglycerol acyltransferase from the cyanobacterium Anabaena variabilis. Biochim. Biophys. Acta 963 (1988) 493–500. [DOI] [PMID: 3143419]
[EC 2.3.1.141 created 1992]
 
 
EC 2.4.1.312     Relevance: 90.2%
Accepted name: protein O-mannose β-1,4-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 3-O-(α-D-mannosyl)-L-threonyl-[protein] = UDP + 3-O-[N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl]-L-threonyl-[protein]
For diagram of glycoprotein biosynthesis, click here
Other name(s): GTDC2 (gene name); POMGNT2
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-threonyl-[protein] 4-β-N-acetyl-D-glucosaminyltransferase
Comments: The human protein is involved in the formation of a phosphorylated trisaccharide on a threonine residue of α-dystroglycan, an extracellular peripheral glycoprotein that acts as a receptor for extracellular matrix proteins containing laminin-G domains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F., Lee, H., Nelson, S.F., Yu, L. and Campbell, K.P. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341 (2013) 896–899. [DOI] [PMID: 23929950]
[EC 2.4.1.312 created 2013]
 
 
EC 2.4.1.255     Relevance: 90.1%
Accepted name: protein O-GlcNAc transferase
Reaction: (1) UDP-N-acetyl-α-D-glucosamine + [protein]-L-serine = UDP + [protein]-3-O-(N-acetyl-β-D-glucosaminyl)-L-serine
(2) UDP-N-acetyl-α-D-glucosamine + [protein]-L-threonine = UDP + [protein]-3-O-(N-acetyl-β-D-glucosaminyl)-L-threonine
Other name(s): O-GlcNAc transferase; OGTase; O-linked N-acetylglucosaminyltransferase; uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase; protein O-linked β-N-acetylglucosamine transferase
Systematic name: UDP-N-α-acetyl-D-glucosamine:[protein]-3-O-N-acetyl-β-D-glucosaminyl transferase
Comments: Within higher eukaryotes post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. EC 2.4.1.255 (protein O-GlcNAc transferase) transfers GlcNAc onto substrate proteins and EC 3.2.1.169 (protein O-GlcNAcase) cleaves GlcNAc from the modified proteins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Banerjee, S., Robbins, P.W. and Samuelson, J. Molecular characterization of nucleocytosolic O-GlcNAc transferases of Giardia lamblia and Cryptosporidium parvum. Glycobiology 19 (2009) 331–336. [DOI] [PMID: 18948359]
2.  Clarke, A.J., Hurtado-Guerrero, R., Pathak, S., Schuttelkopf, A.W., Borodkin, V., Shepherd, S.M., Ibrahim, A.F. and van Aalten, D.M. Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J. 27 (2008) 2780–2788. [DOI] [PMID: 18818698]
3.  Rao, F.V., Dorfmueller, H.C., Villa, F., Allwood, M., Eggleston, I.M. and van Aalten, D.M. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J. 25 (2006) 1569–1578. [DOI] [PMID: 16541109]
4.  Haltiwanger, R.S., Blomberg, M.A. and Hart, G.W. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 267 (1992) 9005–9013. [PMID: 1533623]
5.  Lubas, W.A., Frank, D.W., Krause, M. and Hanover, J.A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272 (1997) 9316–9324. [DOI] [PMID: 9083068]
6.  Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. and Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469 (2011) 564–567. [DOI] [PMID: 21240259]
[EC 2.4.1.255 created 2011]
 
 
EC 5.1.3.24     Relevance: 89.8%
Accepted name: N-acetylneuraminate epimerase
Reaction: N-acetyl-α-neuraminate = N-acetyl-β-neuraminate (oveall reaction)
(1a) N-acetyl-α-neuraminate = aceneuramate
(1b) aceneuramate = N-acetyl-β-neuraminate
Glossary: aceneuramate = (4S,5R,6R,7S,8R)-5-acetamido-4,6,7,8,9-pentahydroxy-2-oxononanoate
Other name(s): sialic acid epimerase; N-acetylneuraminate mutarotase; NanM; NanQ
Systematic name: N-acetyl-α-neuraminate 2-epimerase
Comments: Sialoglycoconjugates present in vertebrates are linked exclusively by α-linkages and are released in α form during degradation. This enzyme accelerates maturotation to the β form via the open form (which also occurs as a slow spontaneous reaction). The open form is necessary for further metabolism by the bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Severi, E., Müller, A., Potts, J.R., Leech, A., Williamson, D., Wilson, K.S. and Thomas, G.H. Sialic acid mutarotation is catalyzed by the Escherichia coli β-propeller protein YjhT. J. Biol. Chem. 283 (2008) 4841–4849. [DOI] [PMID: 18063573]
2.  Kentache, T., Thabault, L., Deumer, G., Haufroid, V., Frederick, R., Linster, C.L., Peracchi, A., Veiga-da-Cunha, M., Bommer, G.T. and Van Schaftingen, E. The metalloprotein YhcH is an anomerase providing N-acetylneuraminate aldolase with the open form of its substrate. J. Biol. Chem. :100699 (2021). [DOI] [PMID: 33895133]
[EC 5.1.3.24 created 2011, modified 2021]
 
 
EC 2.4.1.49     Relevance: 89.8%
Accepted name: cellodextrin phosphorylase
Reaction: [(1→4)-β-D-glucosyl]n + phosphate = [(1→4)-β-D-glucosyl]n-1 + α-D-glucose 1-phosphate
Other name(s): β-1,4-oligoglucan:orthophosphate glucosyltransferase; 1,4-β-D-oligo-D-glucan:phosphate α-D-glucosyltransferase
Systematic name: (1→4)-β-D-glucan:phosphate α-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-58-0
References:
1.  Sheth, K. and Alexander, J.K. Purification and properties of β-1,4-oligoglucan:orthophosphate glucosyltransferase from Clostridium thermocellum. J. Biol. Chem. 244 (1969) 457–464. [PMID: 5773308]
[EC 2.4.1.49 created 1972]
 
 
EC 2.4.1.30     Relevance: 89.8%
Accepted name: 1,3-β-oligoglucan phosphorylase
Reaction: [(1→3)-β-D-glucosyl]n + phosphate = [(1→3)-β-D-glucosyl]n-1 + α-D-glucose 1-phosphate
Other name(s): β-1,3-oligoglucan:orthophosphate glucosyltransferase II; β-1,3-oligoglucan phosphorylase; 1,3-β-D-oligoglucan:phosphate α-D-glucosyltransferase
Systematic name: (1→3)-β-D-glucan:phosphate α-D-glucosyltransferase
Comments: Does not act on laminarin. Differs in specificity from EC 2.4.1.31 (laminaribiose phosphorylase) and EC 2.4.1.97 (1,3-β-D-glucan phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37257-28-6
References:
1.  Maréchal, L.R. β-1,3-Oligoglucan:orthophosphate glucosyltransferases from Euglena gracilis. I. Isolation and some properties of a β-1,3-oligoglucan phosphorylase. Biochim. Biophys. Acta 146 (1967) 417–430. [DOI] [PMID: 6066291]
2.  Maréchal, L.R. β-1,3-Oligoglucan: orthophosphate glucosyltransferases from Euglena gracilis. II. Comparative studies between laminaribiose- and β-1,3-oligoglucan phosphorylase. Biochim. Biophys. Acta 146 (1967) 431–442. [DOI] [PMID: 6066292]
[EC 2.4.1.30 created 1972]
 
 
EC 2.4.1.377     Relevance: 89.3%
Accepted name: dTDP-Rha:α-D-Gal-diphosphoundecaprenol α-1,3-rhamnosyltransferase
Reaction: dTDP-β-L-rhamnose + α-D-galactosyl-diphospho-ditrans,octacis-undecaprenol = dTDP + α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaN (gene name); rfbN (gene name)
Systematic name: dTDP-β-L-rhamnose:α-D-galactosyl-diphospho-ditrans,octacis-undecaprenol 3-α-rhamnosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from several Salmonella strains, participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B, D and E groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
[EC 2.4.1.377 created 2021]
 
 
EC 2.4.1.31     Relevance: 88.9%
Accepted name: laminaribiose phosphorylase
Reaction: 3-β-D-glucosyl-D-glucose + phosphate = D-glucose + α-D-glucose 1-phosphate
Systematic name: 3-β-D-glucosyl-D-glucose:phosphate α-D-glucosyltransferase
Comments: Also acts on 1,3-β-D-oligoglucans. Differs in specificity from EC 2.4.1.30 (1,3-β-oligoglucan phosphorylase) and EC 2.4.1.97 (1,3-β-D-glucan phosphorylase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37257-29-7
References:
1.  Goldemberg, S.H., Maréchal, L.R. and De Souza, B.C. β-1,3-Oligoglucan: orthophosphate glucosyltransferase from Euglena gracilis. J. Biol. Chem. 241 (1966) 45–50. [PMID: 5901055]
2.  Manners, D.J. and Taylor, D.C. Studies on carbohydrate metabolizing enzymes. XVI. Specificity of laminaribiose phosphorylase from Astasia ocellata. Arch. Biochem. Biophys. 121 (1967) 443–451. [DOI] [PMID: 6057111]
[EC 2.4.1.31 created 1972]
 
 
EC 2.4.1.12     Relevance: 88.2%
Accepted name: cellulose synthase (UDP-forming)
Reaction: UDP-α-D-glucose + [(1→4)-β-D-glucosyl]n = UDP + [(1→4)-β-D-glucosyl]n+1
Other name(s): UDP-glucose—β-glucan glucosyltransferase; UDP-glucose-cellulose glucosyltransferase; GS-I; β-1,4-glucosyltransferase; uridine diphosphoglucose-1,4-β-glucan glucosyltransferase; β-1,4-glucan synthase; β-1,4-glucan synthetase; β-glucan synthase; 1,4-β-D-glucan synthase; 1,4-β-glucan synthase; glucan synthase; UDP-glucose-1,4-β-glucan glucosyltransferase; uridine diphosphoglucose-cellulose glucosyltransferase; UDP-glucose:1,4-β-D-glucan 4-β-D-glucosyltransferase; UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of cellulose. A similar enzyme utilizes GDP-glucose [EC 2.4.1.29 cellulose synthase (GDP-forming)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-19-4
References:
1.  Glaser, L. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. Biol. Chem. 232 (1958) 627–636. [PMID: 13549448]
[EC 2.4.1.12 created 1961]
 
 
EC 2.3.1.72     Relevance: 87.9%
Accepted name: indoleacetylglucose—inositol O-acyltransferase
Reaction: 1-O-(indol-3-yl)acetyl-β-D-glucose + myo-inositol = D-glucose + O-(indol-3-yl)acetyl-myo-inositol
Other name(s): indole-3-acetyl-β-1-D-glucoside:myo-inositol indoleacetyltransferase; 1-O-(indol-3-ylacetyl)-β-D-glucose:myo-inositol indole-3-ylacetyltransferase
Systematic name: 1-O-(indol-3-yl)acetyl-β-D-glucose:myo-inositol (indol-3-yl)acetyltransferase
Comments: The position of acylation is indeterminate because of the ease of acyl transfer between hydroxy groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74082-57-8
References:
1.  Michalczuk, L. and Bandurski, R.S. Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem. J. 207 (1982) 273–281. [PMID: 6218801]
2.  Michalczuk, L. and Bandurski, R.S. UDP-glucose: indoleacetic acid glucosyl transferase and indoleacetyl-glucose: myo-inositol indoleacetyl transferase. Biochem. Biophys. Res. Commun. 93 (1980) 588–592. [DOI] [PMID: 6446303]
[EC 2.3.1.72 created 1984, modified 2003]
 
 
EC 1.1.1.367     Relevance: 87.9%
Accepted name: UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose reductase
Reaction: UDP-2-acetamido-2,6-dideoxy-β-L-talose + NAD(P)+ = UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose + NAD(P)H + H+
For diagram of UDP-N-acetyl-β-L-fucosamine biosynthesis, click here
Glossary: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-pneumosamine
Other name(s): WbjC; Cap5F
Systematic name: UDP-2-acetamido-2,6-dideoxy-L-talose:NADP+ oxidoreductase
Comments: Part of the biosynthesis of UDP-N-acetyl-L-fucosamine. Isolated from the bacteria Pseudomonas aeruginosa and Staphylococcus aureus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kneidinger, B., O'Riordan, K., Li, J., Brisson, J.R., Lee, J.C. and Lam, J.S. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J. Biol. Chem. 278 (2003) 3615–3627. [DOI] [PMID: 12464616]
2.  Mulrooney, E.F., Poon, K.K., McNally, D.J., Brisson, J.R. and Lam, J.S. Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J. Biol. Chem. 280 (2005) 19535–19542. [DOI] [PMID: 15778500]
3.  Miyafusa, T., Tanaka, Y., Kuroda, M., Ohta, T. and Tsumoto, K. Expression, purification, crystallization and preliminary diffraction analysis of CapF, a capsular polysaccharide-synthesis enzyme from Staphylococcus aureus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 512–515. [DOI] [PMID: 18540063]
[EC 1.1.1.367 created 2014]
 
 
EC 3.2.1.214     Relevance: 87.8%
Accepted name: exo β-1,2-glucooligosaccharide sophorohydrolase (non-reducing end)
Reaction: [(1→2)-β-D-glucosyl]n + H2O = sophorose + [(1→2)-β-D-glucosyl]n-2
Glossary: sophorose = β-D-glucopyranosyl-(1→2)-D-glucopyranose
Systematic name: exo (1→2)-β-D-glucooligosaccharide sophorohydrolase (non-reducing end)
Comments: The enzyme, characterized from the bacterium Parabacteroides distasonis, specifically hydrolyses (1→2)-β-D-glucooligosaccharides to sophorose. The best substrates are the tetra- and pentasaccharides. The enzyme is not able to cleave the trisaccharide, and activity with longer linear (1→2)-β-D-glucans is quite low. This enzyme acts in exo mode and is not able to hydrolyse cyclic (1→2)-β-D-glucans.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shimizu, H., Nakajima, M., Miyanaga, A., Takahashi, Y., Tanaka, N., Kobayashi, K., Sugimoto, N., Nakai, H. and Taguchi, H. Characterization and structural analysis of a novel exo-type enzyme acting on β-1,2-glucooligosaccharides from Parabacteroides distasonis. Biochemistry 57 (2018) 3849–3860. [PMID: 29763309]
[EC 3.2.1.214 created 2020]
 
 
EC 2.4.1.197     Relevance: 87.8%
Accepted name: high-mannose-oligosaccharide β-1,4-N-acetylglucosaminyltransferase
Reaction: Transfers an N-acetyl-D-glucosamine residue from UDP-N-acetyl-D-glucosamine to the 4-position of a mannose linked α-(1→6) to the core mannose of high-mannose oligosaccharides produced by Dictyostelium discoideum
Other name(s): uridine diphosphoacetylglucosamine-oligosaccharide acetylglucosaminyltransferase; acetylglucosamine-oligosaccharide acetylglucosaminyltransferase; UDP-GlcNAc:oligosaccharide β-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:high-mannose-oligosaccharide β-1,4-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-D-glucosamine:high-mannose-oligosaccharide 4-β-N-acetylglucosaminyltransferase
Comments: The activity of the intersecting mannose residue as acceptor is dependent on two other mannose residues attached by α-1,3 and α-1,6 links.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 123425-54-7
References:
1.  Sharkey, D.J. and Kornfeld, R. Identification of an N-acetylglucosaminyltransferase in Dictyostelium discoideum that transfers an "intersecting" N-acetylglucosamine residue to high mannose oligosaccharides. J. Biol. Chem. 264 (1989) 10411–10419. [PMID: 2525124]
[EC 2.4.1.197 created 1992]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald