The Enzyme Database

Your query returned 2 entries.    printer_iconPrintable version



EC 1.14.99.61     
Accepted name: cyclooctat-9-en-7-ol 5-monooxygenase
Reaction: cyclooctat-9-en-7-ol + reduced acceptor + O2 = cyclooctat-9-ene-5,7-diol + acceptor + H2O
For diagram of cyclooctatin biosynthesis, click here
Glossary: cyclooctat-9-en-7-ol = (1S,3aS,4R,7S,9aS,10aS)-1,4,9a-trimethyl-7-(propan-2-yl)-1,2,3,3a,4,5,7,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulen-4-ol
cyclooctat-9-ene-5,7-diol = (1S,3R,3aS,4R,7S,9aS,10aS)-1,4,9a-trimethyl-7-(propan-2-yl)-1,2,3,3a,4,5,7,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulene-3,4-diol
Other name(s): CotB3
Systematic name: cyclooctat-9-en-7-ol,hydrogen-donor:oxygen oxidoreductase (5-hydroxylating)
Comments: Isolated from the bacterium Streptomyces melanosporofaciens M1614-43f2. Involved in the biosynthesis of cyclooctatin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kim, S.Y., Zhao, P., Igarashi, M., Sawa, R., Tomita, T., Nishiyama, M. and Kuzuyama, T. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two P450 hydroxylases. Chem. Biol. 16 (2009) 736–743. [DOI] [PMID: 19635410]
2.  Gorner, C., Schrepfer, P., Redai, V., Wallrapp, F., Loll, B., Eisenreich, W., Haslbeck, M. and Bruck, T. Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microb. Cell Fact. 15:86 (2016). [PMID: 27216162]
[EC 1.14.99.61 created 2018]
 
 
EC 4.2.3.146     
Accepted name: cyclooctat-9-en-7-ol synthase
Reaction: geranylgeranyl diphosphate + H2O = cyclooctat-9-en-7-ol + diphosphate
For diagram of biosynthesis of fusicoccane diterpenoids, click here
Glossary: cyclooctat-9-en-7-ol = (1R,3aR,4S,7R,9aR,10aR)-1,4,9a-trimethyl-7-(propan-2-yl)-1,2,3,3a,4,5,7,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulen-4-ol
Other name(s): cotB2
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclooctat-9-en-7-ol-forming)
Comments: Requires Mg2+. Isolated from the bacterium Streptomyces melanosporofaciens, where it is part of the biosynthesis of cyclooctatin, a potent inhibitor of lysophospholipase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kim, S.Y., Zhao, P., Igarashi, M., Sawa, R., Tomita, T., Nishiyama, M. and Kuzuyama, T. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two P450 hydroxylases. Chem. Biol. 16 (2009) 736–743. [DOI] [PMID: 19635410]
2.  Zhang, X., Shang, G., Gu, L. and Shen, Y. Crystallization and preliminary X-ray diffraction analysis of the diterpene cyclooctatin synthase (CYC) from Streptomyces sp. LZ35. Acta Crystallogr. F Struct. Biol. Commun. 70 (2014) 366–369. [DOI] [PMID: 24598929]
3.  Janke, R., Gorner, C., Hirte, M., Bruck, T. and Loll, B. The first structure of a bacterial diterpene cyclase: CotB2. Acta Crystallogr. D Biol. Crystallogr. 70 (2014) 1528–1537. [DOI] [PMID: 24914964]
4.  Meguro, A., Motoyoshi, Y., Teramoto, K., Ueda, S., Totsuka, Y., Ando, Y., Tomita, T., Kim, S.Y., Kimura, T., Igarashi, M., Sawa, R., Shinada, T., Nishiyama, M. and Kuzuyama, T. An unusual terpene cyclization mechanism involving a carbon-carbon bond rearrangement. Angew. Chem. Int. Ed. Engl. 54 (2015) 4353–4356. [DOI] [PMID: 25689152]
5.  Tomita, T., Kim, S.Y., Teramoto, K., Meguro, A., Ozaki, T., Yoshida, A., Motoyoshi, Y., Mori, N., Ishigami, K., Watanabe, H., Nishiyama, M. and Kuzuyama, T. Structural Insights into the CotB2-catalyzed cyclization of geranylgeranyl diphosphate to the diterpene cyclooctat-9-en-7-ol. ACS Chem. Biol. 12 (2017) 1621–1628. [DOI] [PMID: 28463490]
[EC 4.2.3.146 created 2014]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald