The Enzyme Database

Your query returned 7 entries.    printer_iconPrintable version

EC 2.1.1.54     
Accepted name: deoxycytidylate C-methyltransferase
Reaction: 5,10-methylenetetrahydrofolate + dCMP = dihydrofolate + deoxy-5-methylcytidylate
Other name(s): deoxycytidylate methyltransferase; dCMP methyltransferase
Systematic name: 5,10-methylenetetrahydrofolate:dCMP C-methyltransferase
Comments: dCMP is methylated by formaldehyde in the presence of tetrahydrofolate. CMP, dCTP and CTP can act as acceptors, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 61970-01-2
References:
1.  Kuo, T.-T. and Tu, J. Enzymatic synthesis of deoxy-5-methyl-cytidylic acid replacing deoxycytidylic acid in Xanthomonas oryzae phage Xp12DNA. Nature 263 (1976) 615. [PMID: 980110]
[EC 2.1.1.54 created 1978]
 
 
EC 2.1.2.8     
Accepted name: deoxycytidylate 5-hydroxymethyltransferase
Reaction: 5,10-methylenetetrahydrofolate + H2O + deoxycytidylate = tetrahydrofolate + 5-hydroxymethyldeoxycytidylate
Other name(s): dCMP hydroxymethylase; d-cytidine 5′-monophosphate hydroxymethylase; deoxyCMP hydroxymethylase; deoxycytidylate hydroxymethylase; deoxycytidylic hydroxymethylase
Systematic name: 5,10-methylenetetrahydrofolate:deoxycytidylate 5-hydroxymethyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9012-68-4
References:
1.  Mathews, C.K., Brown, F. and Cohen, S.S. Virus-induced acquisition of metabolic function. VII. Biosynthesis de novo of deoxycytidylate hydroxymethylase. J. Biol. Chem. 239 (1964) 2957–2963. [PMID: 14217882]
[EC 2.1.2.8 created 1972]
 
 
EC 2.7.4.5      
Deleted entry:  deoxycytidylate kinase. Now included with EC 2.7.4.14 cytidylate kinase
[EC 2.7.4.5 created 1961, deleted 1972]
 
 
EC 2.7.4.14     
Accepted name: UMP/CMP kinase
Reaction: (1) ATP + (d)CMP = ADP + (d)CDP
(2) ATP + UMP = ADP + UDP
Other name(s): cytidylate kinase (misleading); deoxycytidylate kinase (misleading); CTP:CMP phosphotransferase (misleading); dCMP kinase (misleading); deoxycytidine monophosphokinase (misleading); UMP-CMP kinase; ATP:UMP-CMP phosphotransferase; pyrimidine nucleoside monophosphate kinase; uridine monophosphate-cytidine monophosphate phosphotransferase
Systematic name: ATP:(d)CMP/UMP phosphotransferase
Comments: This eukaryotic enzyme is a bifunctional enzyme that catalyses the phosphorylation of both CMP and UMP with similar efficiency. dCMP can also act as acceptor. Different from the monofunctional prokaryotic enzymes EC 2.7.4.25, (d)CMP kinase and EC 2.7.4.22, UMP kinase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37278-21-0
References:
1.  Hurwitz, J. The enzymatic incorporation of ribonucleotides into polydeoxynucleotide material. J. Biol. Chem. 234 (1959) 2351–2358. [PMID: 14405566]
2.  Ruffner, B.W., Jr. and Anderson, E.P. Adenosine triphosphate: uridine monophosphate-cytidine monophosphate phosphotransferase from Tetrahymena pyriformis. J. Biol. Chem. 244 (1969) 5994–6002. [PMID: 5350952]
3.  Scheffzek, K., Kliche, W., Wiesmuller, L. and Reinstein, J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5′-adenosyl) P5-(5′-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 Å: implications for water-mediated specificity. Biochemistry 35 (1996) 9716–9727. [DOI] [PMID: 8703943]
4.  Zhou, L., Lacroute, F. and Thornburg, R. Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. Plant Physiol. 117 (1998) 245–254. [PMID: 9576794]
5.  Van Rompay, A.R., Johansson, M. and Karlsson, A. Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme. Mol. Pharmacol. 56 (1999) 562–569. [PMID: 10462544]
[EC 2.7.4.14 created 1961 as EC 2.7.4.5, transferred 1972 to EC 2.7.4.14, modified 1980, modified 2011]
 
 
EC 2.7.4.25     
Accepted name: (d)CMP kinase
Reaction: ATP + (d)CMP = ADP + (d)CDP
Glossary: CMP = cytidine monophosphate
dCMP = deoxycytidine monophosphate
CDP = cytidine diphosphate
dCDP = deoxycytidine diphosphate
UMP = uridine monophosphate
UDP = uridine diphosphate
Other name(s): cmk (gene name); prokaryotic cytidylate kinase; deoxycytidylate kinase (misleading); dCMP kinase (misleading); deoxycytidine monophosphokinase (misleading)
Systematic name: ATP:(d)CMP phosphotransferase
Comments: The prokaryotic cytidine monophosphate kinase specifically phosphorylates CMP (or dCMP), using ATP as the preferred phosphoryl donor. Unlike EC 2.7.4.14, a eukaryotic enzyme that phosphorylates UMP and CMP with similar efficiency, the prokaryotic enzyme phosphorylates UMP with very low rates, and this function is catalysed in prokaryotes by EC 2.7.4.22, UMP kinase. The enzyme phosphorylates dCMP nearly as well as it does CMP [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bertrand, T., Briozzo, P., Assairi, L., Ofiteru, A., Bucurenci, N., Munier-Lehmann, H., Golinelli-Pimpaneau, B., Barzu, O. and Gilles, A.M. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. J. Mol. Biol. 315 (2002) 1099–1110. [DOI] [PMID: 11827479]
2.  Thum, C., Schneider, C.Z., Palma, M.S., Santos, D.S. and Basso, L.A. The Rv1712 Locus from Mycobacterium tuberculosis H37Rv codes for a functional CMP kinase that preferentially phosphorylates dCMP. J. Bacteriol. 191 (2009) 2884–2887. [DOI] [PMID: 19181797]
[EC 2.7.4.25 created 2011]
 
 
EC 3.5.4.12     
Accepted name: dCMP deaminase
Reaction: dCMP + H2O = dUMP + NH3
Other name(s): deoxycytidylate deaminase; deoxy-CMP-deaminase; deoxycytidylate aminohydrolase; deoxycytidine monophosphate deaminase; deoxycytidine-5′-phosphate deaminase; deoxycytidine-5′-monophosphate aminohydrolase
Systematic name: dCMP aminohydrolase
Comments: Also acts on some 5-substituted dCMPs.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9026-92-0
References:
1.  Scarano, E. The enzymatic deamination of 6-aminopyrimidine deoxyribonucleotides. I. The enzymatic deamination of deoxycytidine 5′-phosphate and of 5-methyldeoxycytidine 5-methyldeoxycytidine 5′-phosphate. J. Biol. Chem. 235 (1960) 706–713. [PMID: 14442222]
2.  Scarano, E., Bonaduce, L. and de Petrocellis, B. The enzymatic deamination of 6-aminopyrimidine deoxyribonucleotides. II. Purification and properties of a 6-aminopyrimidine deoxyribonucleoside 5′-phosphate deaminase from unfertilized eggs of sea urchin. J. Biol. Chem. 235 (1960) 3556–3561. [PMID: 13747062]
3.  Sergott, R.C., Debeer, L.J. and Bessman, M.J. On the regulation of a bacterial deoxycytidylate deaminase. J. Biol. Chem. 246 (1971) 7755–7758. [PMID: 5002683]
[EC 3.5.4.12 created 1965]
 
 
EC 4.6.1.6     
Accepted name: cytidylate cyclase
Reaction: CTP = 3′,5′-cyclic CMP + diphosphate
Glossary: 3′,5′-cyclic CMP = cCMP
cytidylate = CMP
Other name(s): 3′,5′-cyclic-CMP synthase; cytidylyl cyclase; cytidyl cyclase; CTP diphosphate-lyase (cyclizing); pycC (gene name) (ambiguous)
Systematic name: CTP diphosphate-lyase (cyclizing; 3′,5′-cyclic-CMP-forming)
Comments: In bacteria and archaea the enzyme's product, cCMP, functions as a second messenger in bacterial immunity against viruses. The enzyme is synthesized following phage infection and activates immune effectors that execute an antiviral response.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 65357-82-6
References:
1.  Cech, S.Y. and Ignarro, L.J. Cytidine 3′,5′-monophosphate (cyclic CMP) formation by homogenates of mouse liver. Biochem. Biophys. Res. Commun. 80 (1978) 119–125. [DOI] [PMID: 23778]
2.  Newton, R.P., Salih, S.G., Hakeem, N.A., Kingston, E.E. and Beynon, J.H. 3′,5′-Cyclic UMP, -cyclic IMP, -cyclic TMP and related enzymes in mammalian tissues. Biochem. Soc. Trans. 13 (1985) 1134–1135. [DOI]
3.  Tal, N., Morehouse, B.R., Millman, A., Stokar-Avihail, A., Avraham, C., Fedorenko, T., Yirmiya, E., Herbst, E., Brandis, A., Mehlman, T., Oppenheimer-Shaanan, Y., Keszei, A.FA., Shao, S., Amitai, G., Kranzusch, P.J. and Sorek, R. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184 (2021) 5728–5739.e16. [DOI] [PMID: 34644530]
[EC 4.6.1.6 created 1989]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald