The Enzyme Database

Your query returned 7 entries.    printer_iconPrintable version

EC 1.14.13.41      
Transferred entry: tyrosine N-monooxygenase. Now EC 1.14.14.36, tyrosine N-monooxygenase
[EC 1.14.13.41 created 1992, modified 2001, modified 2005, deleted 2016]
 
 
EC 1.14.13.42      
Deleted entry: hydroxyphenylacetonitrile 2-monooxygenase. The activity is covered by EC 1.14.13.68, 4-hydroxyphenylacetaldehyde oxime monooxygenase, that performs the two consecutive reactions in the conversion of (Z)-4-hydroxyphenylacetaldehyde oxime to (S)-4-hydroxymandelonitrile
[EC 1.14.13.42 created 1992, deleted 2011]
 
 
EC 1.14.13.68      
Transferred entry: 4-hydroxyphenylacetaldehyde oxime monooxygenase. Now EC 1.14.14.37, 4-hydroxyphenylacetaldehyde oxime monooxygenase
[EC 1.14.13.68 created 2000, modified 2005, deleted 2016]
 
 
EC 1.14.14.36     
Accepted name: tyrosine N-monooxygenase
Reaction: L-tyrosine + 2 O2 + 2 [reduced NADPH—hemoprotein reductase] = (E)-[4-hydroxyphenylacetaldehyde oxime] + 2 [oxidized NADPH—hemoprotein reductase] + CO2 + 3 H2O (overall reaction)
(1a) L-tyrosine + O2 + [reduced NADPH—hemoprotein reductase] = N-hydroxy-L-tyrosine + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) N-hydroxy-L-tyrosine + O2 + [reduced NADPH—hemoprotein reductase] = N,N-dihydroxy-L-tyrosine + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) N,N-dihydroxy-L-tyrosine = (E)-[4-hydroxyphenylacetaldehyde oxime] + CO2 + H2O
For diagram of dhurrin biosynthesis, click here
Other name(s): tyrosine N-hydroxylase; CYP79A1
Systematic name: L-tyrosine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (N-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from Sorghum is involved in the biosynthesis of the cyanogenic glucoside dhurrin. In Sinapis alba (white mustard) the enzyme is involved in the biosynthesis of the glucosinolate sinalbin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 159447-19-5
References:
1.  Halkier, B.A. and Møller, B.L. The biosynthesis of cyanogenic glucosides in higher plants. Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench and the involvement of 1-ACI-nitro-2-(p-hydroxyphenyl)ethane as an intermediate. J. Biol. Chem. 265 (1990) 21114–21121. [PMID: 2250015]
2.  Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. Cytochrome P-450TYR is a multifunctional heme-thiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. J. Biol. Chem. 270 (1995) 3506–3511. [DOI] [PMID: 7876084]
3.  Bennett, R.N., Kiddle, G. and Wallsgrove, R.M. Involvement of cytochrome P450 in glucosinolate biosynthesis in white mustard (a biochemical anomaly). Plant Physiol. 114 (1997) 1283–1291. [PMID: 12223771]
4.  Kahn, R.A., Fahrendorf, T., Halkier, B.A. and Møller, B.L. Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 363 (1999) 9–18. [DOI] [PMID: 10049494]
5.  Bak, S., Olsen, C.E., Halkier, B.A. and Møller, B.L. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Plant Physiol. 123 (2000) 1437–1448. [PMID: 10938360]
6.  Nielsen, J.S. and Møller, B.L. Cloning and expression of cytochrome P450 enzymes catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima. Plant Physiol. 122 (2000) 1311–1321. [PMID: 10759528]
7.  Busk, P.K. and Møller, B.L. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129 (2002) 1222–1231. [DOI] [PMID: 12114576]
8.  Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl. Acad. Sci. USA 102 (2005) 1779–1784. [DOI] [PMID: 15665094]
9.  Clausen, M., Kannangara, R.M., Olsen, C.E., Blomstedt, C.K., Gleadow, R.M., Jørgensen, K., Bak, S., Motawie, M.S. and Møller, B.L. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways. Plant J. 84 (2015) 558–573. [DOI] [PMID: 26361733]
[EC 1.14.14.36 created 1992 as EC 1.14.13.41, modified 2001, modified 2005, transferred 2016 to EC 1.14.14.36]
 
 
EC 1.14.14.37     
Accepted name: 4-hydroxyphenylacetaldehyde oxime monooxygenase
Reaction: (E)-4-hydroxyphenylacetaldehyde oxime + [reduced NADPH—hemoprotein reductase] + O2 = (S)-4-hydroxymandelonitrile + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) (E)-4-hydroxyphenylacetaldehyde oxime = (Z)-4-hydroxyphenylacetaldehyde oxime
(1b) (Z)-4-hydroxyphenylacetaldehyde oxime = 4-hydroxyphenylacetonitrile + H2O
(1c) 4-hydroxyphenylacetonitrile + [reduced NADPH—hemoprotein reductase] + O2 = (S)-4-hydroxymandelonitrile + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of dhurrin biosynthesis, click here
Glossary: (S)-4-hydroxymandelonitrile = (2S)-hydroxy(4-hydroxyphenyl)acetonitrile
Other name(s): 4-hydroxybenzeneacetaldehyde oxime monooxygenase; cytochrome P450II-dependent monooxygenase; NADPH-cytochrome P450 reductase (CYP71E1); CYP71E1; 4-hydroxyphenylacetaldehyde oxime,NADPH:oxygen oxidoreductase
Systematic name: (E)-4-hydroxyphenylacetaldehyde oxime,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase
Comments: This cytochrome P-450 (heme thiolate) enzyme is involved in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum. It catalyses three different activities - isomerization of the (E) isomer to the (Z) isomer, dehydration, and C-hydroxylation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  MacFarlane, I.J., Lees, E.M. and Conn, E.E. The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor. J. Biol. Chem. 250 (1975) 4708–4713. [PMID: 237909]
2.  Shimada, M. and Conn, E.E. The enzymatic conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile. Arch. Biochem. Biophys. 180 (1977) 199–207. [DOI] [PMID: 193443]
3.  Busk, P.K. and Møller, B.L. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129 (2002) 1222–1231. [DOI] [PMID: 12114576]
4.  Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl. Acad. Sci. USA 102 (2005) 1779–1784. [DOI] [PMID: 15665094]
5.  Clausen, M., Kannangara, R.M., Olsen, C.E., Blomstedt, C.K., Gleadow, R.M., Jørgensen, K., Bak, S., Motawie, M.S. and Møller, B.L. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways. Plant J. 84 (2015) 558–573. [DOI] [PMID: 26361733]
[EC 1.14.14.37 created 2000 as EC 1.14.13.68, modified 2005, transferred 2016 to EC 1.14.14.37]
 
 
EC 2.4.1.85     
Accepted name: cyanohydrin β-glucosyltransferase
Reaction: UDP-α-D-glucose + (S)-4-hydroxymandelonitrile = UDP + (S)-4-hydroxymandelonitrile β-D-glucoside
For diagram of dhurrin biosynthesis, click here
Glossary: dhurrin = (S)-4-hydroxymandelonitrile β-D-glucoside
Other name(s): uridine diphosphoglucose-p-hydroxymandelonitrile glucosyltransferase; UDP-glucose-p-hydroxymandelonitrile glucosyltransferase; uridine diphosphoglucose-cyanohydrin glucosyltransferase; uridine diphosphoglucose:aldehyde cyanohydrin β-glucosyltransferase; UDP-glucose:(S)-4-hydroxymandelonitrile β-D-glucosyltransferase; UGT85B1; UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase; UDP-D-glucose:(S)-4-hydroxymandelonitrile β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:(S)-4-hydroxymandelonitrile β-D-glucosyltransferase (configuration-inverting)
Comments: Acts on a wide range of substrates in vitro, including cyanohydrins, terpenoids, phenolics, hexanol derivatives and plant hormones, in a regiospecific manner [3]. This enzyme is involved in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum, along with EC 1.14.14.36, tyrosine N-monooxygenase and EC 1.14.14.37, 4-hydroxyphenylacetaldehyde oxime monooxygenase. This reaction prevents the disocciation and release of toxic hydrogen cyanide [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55354-52-4
References:
1.  Reay, P.F. and Conn, E.E. The purification and properties of a uridine diphosphate glucose: aldehyde cyanohydrin β-glucosyltransferase from sorghum seedlings. J. Biol. Chem. 249 (1974) 5826–5830. [PMID: 4416442]
2.  Jones, P.R., Møller, B.L. and Hoj, P.B. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J. Biol. Chem. 274 (1999) 35483–35491. [DOI] [PMID: 10585420]
3.  Hansen, K.S., Kristensen, C., Tattersall, D.B., Jones, P.R., Olsen, C.E., Bak, S. and Møller, B.L. The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry 64 (2003) 143–151. [DOI] [PMID: 12946413]
4.  Busk, P.K. and Møller, B.L. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129 (2002) 1222–1231. [DOI] [PMID: 12114576]
5.  Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl. Acad. Sci. USA 102 (2005) 1779–1784. [DOI] [PMID: 15665094]
[EC 2.4.1.85 created 1976, modified 2005]
 
 
EC 3.2.1.182     
Accepted name: 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside β-D-glucosidase
Reaction: (1) (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + H2O = 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one + D-glucose
(2) (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + H2O = 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one + D-glucose
Glossary: DIMBOA glucoside = (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
DIBOA glucoside = (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
Other name(s): DIMBOAGlc hydrolase; DIMBOA glucosidase
Systematic name: (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside β-D-glucosidase
Comments: The enzyme from Triticum aestivum (wheat) has a higher affinity for DIMBOA glucoside than DIBOA glucoside. With Secale cereale (rye) the preference is reversed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sue, M., Ishihara, A. and Iwamura, H. Purification and characterization of a hydroxamic acid glucoside β-glucosidase from wheat (Triticum aestivum L.) seedlings. Planta 210 (2000) 432–438. [PMID: 10750901]
2.  Sue, M., Ishihara, A. and Iwamura, H. Purification and characterization of a β-glucosidase from rye (Secale cereale L.) seedlings. Plant Sci. 155 (2000) 67–74. [DOI] [PMID: 10773341]
3.  Czjzek, M., Cicek, M., Zamboni, V., Bevan, D.R., Henrissat, B. and Esen, A. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. USA 97 (2000) 13555–13560. [DOI] [PMID: 11106394]
4.  Nikus, J., Esen, A. and Jonsson, L.M.V. Cloning of a plastidic rye (Secale cereale) β-glucosidase cDNA and its expression in Escherichia coli. Physiol. Plantarum 118 (2003) 337–348.
5.  Sue, M., Yamazaki, K., Yajima, S., Nomura, T., Matsukawa, T., Iwamura, H. and Miyamoto, T. Molecular and structural characterization of hexameric β-D-glucosidases in wheat and rye. Plant Physiol. 141 (2006) 1237–1247. [DOI] [PMID: 16751439]
6.  Sue, M., Nakamura, C., Miyamoto, T. and Yajima, S. Active-site architecture of benzoxazinone-glucoside β-D-glucosidases in Triticeae. Plant Sci. 180 (2011) 268–275. [DOI] [PMID: 21421370]
[EC 3.2.1.182 created 2012]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald