The Enzyme Database

Your query returned 10 entries.    printer_iconPrintable version



EC 1.2.1.68     
Accepted name: coniferyl-aldehyde dehydrogenase
Reaction: coniferyl aldehyde + H2O + NAD(P)+ = ferulate + NAD(P)H + 2 H+
For diagram of reaction, click here
Systematic name: coniferyl aldehyde:NAD(P)+ oxidoreductase
Comments: Also oxidizes other aromatic aldehydes, but not aliphatic aldehydes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 208540-41-4
References:
1.  Achterholt, S., Priefert, H. and Steinbuchel, A. Purification and characterization of the coniferyl 2-hydroxy-1,4-benzoquinonealdehyde dehydrogenase from Pseudomonas sp. Strain HR199 and molecular characterization of the gene. J. Bacteriol. 180 (1998) 4387–4391. [PMID: 9721273]
[EC 1.2.1.68 created 2000]
 
 
EC 2.1.1.69     
Accepted name: 5-hydroxyfuranocoumarin 5-O-methyltransferase
Reaction: (1) S-adenosyl-L-methionine + a 5-hydroxyfurocoumarin = S-adenosyl-L-homocysteine + a 5-methoxyfurocoumarin (general reaction)
(2) S-adenosyl-L-methionine + bergaptol = S-adenosyl-L-homocysteine + bergapten
For diagram of reaction, click here
Glossary: bergaptol = 5-hydroxypsoralen
O-methylbergaptol = bergapten = 5-methoxypsoralen
Other name(s): furanocoumarin 5-methyltransferase; furanocoumarin 5-O-methyltransferase; bergaptol 5-O-methyltransferase; bergaptol O-methyltransferase; bergaptol methyltransferase; S-adenosyl-L-methionine:bergaptol O-methyltransferase; BMT; S-adenosyl-L-methionine:5-hydroxyfuranocoumarin 5-O-methyltransferase
Systematic name: S-adenosyl-L-methionine:5-hydroxyfurocoumarin 5-O-methyltransferase
Comments: Converts bergaptol into bergapten, which has therapeutic potential in the treatment of psoriasis as it has photosensitizing and antiproliferative activities [4]. The enzyme methylates the 5-hydroxy group of some hydroxy- and methylcoumarins, such as 5-hydroxyxanthotoxin [3], but has little activity on non-coumarin phenols [1]. Caffeate, 5-hydroxyferulate and daphnetin are not substrates [4]. Cu2+, Zn2+ and Co2+ cause enzyme inhibition [4]. (see also EC 2.1.1.70, 8-hydroxyfuranocoumarin 8-O-methyltransferase)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67339-12-2, 101637-31-4
References:
1.  Thompson, H.J., Sharma, S.K. and Brown, S.A. O-Methyltransferases of furanocoumarin biosynthesis. Arch. Biochem. Biophys. 188 (1978) 272–281. [DOI] [PMID: 28084]
2.  Sharma, S.K., Garrett, J.M. and Brown, S.A. Separation of the S-adenosylmethionine: 5- and 8-hydroxyfuranocoumarin O-methyltransferases of Ruta graveolens L. by general ligand affinity chromatography. Z. Naturforsch. [C] 34C (1979) 387–391. [PMID: 156999]
3.  Hauffe, K.D., Hahlbrock, K. and Scheel, D. Elicitor-stimulated furanocoumarin biosynthesis in cultured parsley cells - S-adenosyl-L-methionine-bergaptol and S-adenosyl-L-methionine-xanthotoxol O-methyltransferases. Z. Naturforsch. C: Biosci. 41 (1986) 228–239.
4.  Hehmann, M., Lukačin, R., Ekiert, H. and Matern, U. Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase. Eur. J. Biochem. 271 (2004) 932–940. [PMID: 15009205]
[EC 2.1.1.69 created 1984 (EC 2.1.1.92 created 1989, incorporated 2006), modified 2006]
 
 
EC 2.4.1.120     
Accepted name: sinapate 1-glucosyltransferase
Reaction: UDP-α-D-glucose + sinapate = UDP + 1-O-sinapoyl-β-D-glucose
Glossary: sinapate = (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
Other name(s): uridine diphosphoglucose-sinapate glucosyltransferase; UDP-glucose:sinapic acid glucosyltransferase; uridine 5′-diphosphoglucose-hydroxycinnamic acid acylglucosyltransferase; UDP-glucose:sinapate D-glucosyltransferase
Systematic name: UDP-α-D-glucose:sinapate D-glucosyltransferase
Comments: Some other hydroxycinnamates, including 4-coumarate, ferulate and caffeate, can act as acceptors, but more slowly. Only glucose esters, not glucosides, are formed (cf. EC 2.4.1.126 hydroxycinnamate 4-β-glucosyltransferase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 74082-53-4
References:
1.  Strack, D. Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell free system from Raphanus sativus seedlings. Z. Naturforsch. C: Biosci. 35 (1980) 204–208.
[EC 2.4.1.120 created 1984]
 
 
EC 2.4.1.126     
Accepted name: hydroxycinnamate 4-β-glucosyltransferase
Reaction: UDP-glucose + trans-4-hydroxycinnamate = UDP + 4-O-β-D-glucosyl-4-hydroxycinnamate
Other name(s): uridine diphosphoglucose-hydroxycinnamate glucosyltransferase; UDP-glucose-hydroxycinnamate glucosyltransferase; hydroxycinnamoyl glucosyltransferase
Systematic name: UDP-glucose:trans-4-hydroxycinnamate 4-O-β-D-glucosyltransferase
Comments: Acts on 4-coumarate, ferulate, caffeate and sinapate, forming a mixture of 4-glucosides and glucose esters (cf. EC 2.4.1.120 sinapate 1-glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77848-85-2
References:
1.  Fleuriet, A., Macheix, J.J., Suen, R. and Ibrahim, R.K. Partial purifiction and some properties of a hydroxycinnamoyl glucosyltransferase from tomato fruits. Z. Naturforsch. C: Biosci. 35 (1980) 967–972.
[EC 2.4.1.126 created 1984]
 
 
EC 2.4.1.271     
Accepted name: crocetin glucosyltransferase
Reaction: (1) UDP-α-D-glucose + crocetin = UDP + β-D-glucosyl crocetin
(2) UDP-α-D-glucose + β-D-glucosyl crocetin = UDP + bis(β-D-glucosyl) crocetin
(3) UDP-α-D-glucose + β-D-gentiobiosyl crocetin = UDP + β-D-gentiobiosyl β-D-glucosyl crocetin
For diagram of crocin biosynthesis, click here
Other name(s): crocetin GTase; UGTCs2; UGT75L6; UDP-glucose:crocetin glucosyltransferase; UDP-glucose:crocetin 8-O-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:crocetin 8-O-D-glucosyltransferase
Comments: In the plants Crocus sativus and Gardenia jasminoides this enzyme esterifies a free carboxyl group of crocetin and some crocetin glycosyl esters. The enzyme from Gardenia can also form glucosyl esters with 4-coumarate, caffeate and ferulate [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Côté, F., Cormier, F., Dufresne, C. and Willemot, C. Properties of a glucosyltransferase involved in crocin synthesis. Plant Sci. 153 (2000) 55–63.
2.  Moraga, A.R., Nohales, P.F., Perez, J.A. and Gomez-Gomez, L. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219 (2004) 955–966. [DOI] [PMID: 15605174]
3.  Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A. and Mizukami, H. UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett. 586 (2012) 1055–1061. [DOI] [PMID: 22569263]
[EC 2.4.1.271 created 2011]
 
 
EC 2.8.3.23     
Accepted name: caffeate CoA-transferase
Reaction: 3-(3,4-dihydroxyphenyl)propanoyl-CoA + (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate = 3-(3,4-dihydroxyphenyl)propanoate + (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl-CoA
Glossary: 3-(3,4-dihydroxyphenyl)propanoate = hydrocaffeate
(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate = (2E)-3-(3,4-dihydroxyphenyl)acrylate = trans-caffeate
Other name(s): CarA
Systematic name: 3-(3,4-dihydroxyphenyl)propanoyl-CoA:(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate CoA-transferase
Comments: The enzyme, isolated from the bacterium Acetobacterium woodii, catalyses an energy-saving CoA loop for caffeate activation. In addition to caffeate, the enzyme can utilize 4-coumarate or ferulate as CoA acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hess, V., Gonzalez, J.M., Parthasarathy, A., Buckel, W. and Muller, V. Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation. Appl. Environ. Microbiol. 79 (2013) 1942–1947. [DOI] [PMID: 23315745]
[EC 2.8.3.23 created 2015]
 
 
EC 3.1.1.73     
Accepted name: feruloyl esterase
Reaction: feruloyl-polysaccharide + H2O = ferulate + polysaccharide
Glossary: ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): ferulic acid esterase; hydroxycinnamoyl esterase; hemicellulase accessory enzyme; FAE-III; cinnamoyl ester hydrolase; FAEA; cinnAE; FAE-I; FAE-II
Systematic name: 4-hydroxy-3-methoxycinnamoyl-sugar hydrolase
Comments: Catalyses the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose in "natural" substrates. p-Nitrophenol acetate and methyl ferulate are poorer substrates. All microbial ferulate esterases are secreted into the culture medium. They are sometimes called hemicellulase accessory enzymes, since they help xylanases and pectinases to break down plant cell wall hemicellulose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 134712-49-5
References:
1.  Faulds, C.B. and Williamson, G. The purification and characterisation of 4-hydroxy-3-methoxy-cinnamic (ferulic) acid esterase from Streptomyces olivochromogenes (3232). J. Gen. Microbiol. 137 (1991) 2339–2345. [DOI] [PMID: 1663152]
2.  Faulds, C.B. and Williamson, G. Purification and characterisation of a ferulic acid esterase (FAE-III) from Aspergillus niger. Specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140 (1994) 779–787.
3.  Kroon, P.A., Faulds, C.B. and Williamson, G. Purification and characterisation of a novel ferulic acid esterase induced by growth of Aspergillus niger on sugarbeet pulp. Biotechnol. Appl. Biochem. 23 (1996) 255–262. [PMID: 8679110]
4.  deVries, R.P. , Michelsen,B., Poulsen, C.H., Kroon, P.A., van den Heuvel, R.H.H., Faulds, C.B., Williamson, G., van den Homberg, J.P.T.W. and Visser, J. The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl. Environ. Microbiol. 63 (1997) 4638–4644. [PMID: 9406381]
5.  Castanares, A., Mccrae, S.I. and Wood, T.M. Purification and properties of a feruloyl/p-coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microbiol. Technol. 14 (1992) 875–884.
[EC 3.1.1.73 created 2000]
 
 
EC 3.5.1.71     
Accepted name: N-feruloylglycine deacylase
Reaction: N-feruloylglycine + H2O = ferulate + glycine
Other name(s): N-feruloylglycine hydrolase
Systematic name: N-feruloylglycine amidohydrolase
Comments: Hydrolyses a range of L-amino acids from the cinnamoyl and substituted cinnamoyl series. Not identical with EC 3.5.1.14 aminoacylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 118731-84-3
References:
1.  Martens, M., Cottenie-Ruysschaert, M., Hanselaer, R., De Cooman, L., Casteele, K.V. and Van Sumere, F. N-Feruloylglycine amidohydrolase from barley seeds and isolated barley embryos. Phytochemistry 27 (1988) 2457–2463.
2.  Martens, M., Cottenie-Ruysschaert, M., Hanselaer, R., De Cooman, L., Casteele, K.V. and Van Sumere, F. Characteristics and specificity of purified N-feruloylglycine amidohydrolase from isolated barley embryos. Phytochemistry 27 (1988) 2465–2475.
[EC 3.5.1.71 created 1992]
 
 
EC 4.1.1.102     
Accepted name: phenacrylate decarboxylase
Reaction: (1) 4-coumarate = 4-vinylphenol + CO2
(2) trans-cinnamate = styrene + CO2
(3) ferulate = 4-vinylguaiacol + CO2
Glossary: 4-coumarate = 3-(4-hydroxyphenyl)prop-2-enoate
trans-cinnamate = (2E)-3-phenylprop-2-enoate
ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): FDC1 (gene name); ferulic acid decarboxylase
Systematic name: 3-phenylprop-2-enoate carboxy-lyase
Comments: The enzyme, found in fungi, catalyses the decarboxylation of phenacrylic acids present in plant cell walls. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mukai, N., Masaki, K., Fujii, T., Kawamukai, M. and Iefuji, H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioeng. 109 (2010) 564–569. [DOI] [PMID: 20471595]
2.  Bhuiya, M.W., Lee, S.G., Jez, J.M. and Yu, O. Structure and mechanism of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81 (2015) 4216–4223. [DOI] [PMID: 25862228]
3.  Payne, K.A., White, M.D., Fisher, K., Khara, B., Bailey, S.S., Parker, D., Rattray, N.J., Trivedi, D.K., Goodacre, R., Beveridge, R., Barran, P., Rigby, S.E., Scrutton, N.S., Hay, S. and Leys, D. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522 (2015) 497–501. [DOI] [PMID: 26083754]
[EC 4.1.1.102 created 2015]
 
 
EC 6.2.1.34     
Accepted name: trans-feruloyl-CoA synthase
Reaction: ferulic acid + CoA + ATP = feruloyl-CoA + products of ATP breakdown
For diagram of reaction, click here
Other name(s): trans-feruloyl-CoA synthetase; trans-ferulate:CoASH ligase (ATP-hydrolysing); ferulate:CoASH ligase (ATP-hydrolysing)
Systematic name: ferulate:CoA ligase (ATP-hydrolysing)
Comments: Requires Mg2+. It has not yet been established whether AMP + diphosphate or ADP + phosphate are formed in this reaction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Narbad, A. and Gasson, M.J. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiology 144 (1998) 1397–1405. [DOI] [PMID: 9611814]
2.  Pometto, A.L. and Crawford, D.L. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus. Appl. Environ. Microbiol. 45 (1983) 1582–1585. [PMID: 6870241]
[EC 6.2.1.34 created 2000]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald