The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

EC 2.4.1.230     
Accepted name: kojibiose phosphorylase
Reaction: 2-α-D-glucosyl-D-glucose + phosphate = D-glucose + β-D-glucose 1-phosphate
Systematic name: 2-α-D-glucosyl-D-glucose:phosphate β-D-glucosyltransferase
Comments: The enzyme from Thermoanaerobacter brockii can act with α-1,2-oligoglucans, such as selaginose, as substrate, but more slowly. The enzyme is inactive when dissaccharides with linkages other than α-1,2 linkages, such as sophorose, trehalose, neotrehalose, nigerose, laminaribiose, maltose, cellobiose, isomaltose, gentiobiose, sucrose and lactose, are used as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 206566-36-1
References:
1.  Chaen, H., Yamamoto, T., Nishimoto, T., Nakada, T., Fukuda, S., Sugimoto, T., Kurimoto, M. and Tsujisaka, Y. Purification and characterization of a novel phosphorylase, kojibiose phosphorylase, from Thermoanaerobium brockii. J. Appl. Glycosci. 46 (1999) 423–429.
2.  Chaen, H., Nishimoto, T., Nakada, T., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Enzymatic synthesis of kojioligosaccharides using kojibiose phosphorylase. J. Biosci. Bioeng. 92 (2001) 177–182. [DOI] [PMID: 16233080]
[EC 2.4.1.230 created 2003]
 
 
EC 2.4.1.279     
Accepted name: nigerose phosphorylase
Reaction: 3-O-α-D-glucopyranosyl-D-glucopyranose + phosphate = D-glucose + β-D-glucose 1-phosphate
Glossary: 3-O-α-D-glucopyranosyl-D-glucopyranose = nigerose
Other name(s): cphy1874 (gene name)
Systematic name: 3-O-α-D-glucopyranosyl-D-glucopyranose:phosphate β-D-glucosyltransferase
Comments: The enzymes from Clostridium phytofermentans is specific for nigerose, and shows only 0.5% relative activity with kojibiose (cf. EC 2.4.1.230, kojibiose phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nihira, T., Nakai, H., Chiku, K. and Kitaoka, M. Discovery of nigerose phosphorylase from Clostridium phytofermentans. Appl. Microbiol. Biotechnol. 93 (2012) 1513–1522. [DOI] [PMID: 21808968]
[EC 2.4.1.279 created 2012]
 
 
EC 2.4.1.282     
Accepted name: 3-O-α-D-glucosyl-L-rhamnose phosphorylase
Reaction: 3-O-α-D-glucopyranosyl-L-rhamnopyranose + phosphate = L-rhamnopyranose + β-D-glucose 1-phosphate
Other name(s): cphy1019 (gene name)
Systematic name: 3-O-α-D-glucopyranosyl-L-rhamnopyranose:phosphate β-D-glucosyltransferase
Comments: The enzyme does not phosphorylate α,α-trehalose, kojibiose, nigerose, or maltose. In the reverse phosphorolysis reaction the enzyme is specific for L-rhamnose as acceptor and β-D-glucose 1-phosphate as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nihira, T., Nakai, H. and Kitaoka, M. 3-O-α-D-glucopyranosyl-L-rhamnose phosphorylase from Clostridium phytofermentans. Carbohydr. Res. 350 (2012) 94–97. [DOI] [PMID: 22277537]
[EC 2.4.1.282 created 2012]
 
 
EC 3.2.1.115     
Accepted name: branched-dextran exo-1,2-α-glucosidase
Reaction: Hydrolysis of (1→2)-α-D-glucosidic linkages at the branch points of dextrans and related polysaccharides, producing free D-glucose
Other name(s): dextran 1,2-α-glucosidase; dextran α-1,2-debranching enzyme; 1,2-α-D-glucosyl-branched-dextran 2-glucohydrolase
Systematic name: (1→2)-α-D-glucosyl-branched-dextran 2-glucohydrolase
Comments: Has a much lower activity with kojibiose and kojitriose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72840-94-9
References:
1.  Kobayashi, M., Mitsuishi, Y., and Matsuda, K. Pronounced hydrolysis of highly branched dextrans with a new type of dextranase. Biochem. Biophys. Res. Commun. 80(2) (1978) 306–312. [DOI] [PMID: 623663]
2.  Mitsuishi, Y., Kobayashi, M. and Matsuda, K. Dextran α-1,2-debranching enzyme from Flavobacterium sp. M-73: its production and purification. Agric. Biol. Chem. 43 (1979) 2283–2290. [DOI]
3.  Mitsuishi, Y., Kobayashi, M. and Matsuda, K. Dextran α-(1→2)-debranching enzyme from Flavobacterium sp. M-73. Properties and mode of action. Carbohydr. Res. 83 (1980) 303–313. [DOI] [PMID: 7407800]
4.  Miyazaki, T., Tanaka, H., Nakamura, S., Dohra, H. and Funane, K. Identification and characterization of dextran α-1,2-debranching enzyme from Microbacterium dextranolyticum. J. Appl. Glycosci. (1999) 70 (2023) 15–24. [DOI] [PMID: 37033117]
[EC 3.2.1.115 created 1989, modified 2023]
 
 
EC 3.2.1.216     
Accepted name: kojibiose hydrolase
Reaction: kojibiose + H2O = β-D-glucopyranose + D-glucopyranose
Glossary: kojibiose = α-D-glucopyranosyl-(1→2)-D-glucopyranose
Other name(s): kojibiase
Systematic name: kojibiose glucohydrolase (configuration-inverting)
Comments: The enzyme, characterized from the bacteria Flavobacterium johnsoniae and Mucilaginibacter mallensis, uses anomer-inverting mechanism to release β-glucose from the non-reducing ends of kojibiose and α-1,2-oligoglucans with a higher degree of polymerization.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nakamura, S., Nihira, T., Kurata, R., Nakai, H., Funane, K., Park, E.Y. and Miyazaki, T. Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. J. Biol. Chem. :101366 (2021). [DOI] [PMID: 34728215]
2.  De Beul, E., Jongbloet, A., Franceus, J. and Desmet, T. Discovery of a kojibiose hydrolase by analysis of specificity-determining correlated positions in glycoside hydrolase family 65. Molecules 26 (2021) 6321. [DOI] [PMID: 34684901]
[EC 3.2.1.216 created 2022]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald