The Enzyme Database

Displaying entries 151-166 of 166.

<< Previous | Next >>    printer_iconPrintable version

EC 4.2.1.115     
Accepted name: UDP-N-acetylglucosamine 4,6-dehydratase (configuration-inverting)
Reaction: UDP-N-acetyl-α-D-glucosamine = UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose + H2O
For diagram of UDP-N-acetyl-β-L-fucosamine biosynthesis, click here and for diagram of mechanism, click here
Glossary: pseudaminic acid = 5,7-bis(acetylamino)-3,5,7,9-tetradeoxy-L-glycero-α-L-manno-2-nonulopyranosonic acid
Other name(s): FlaA1; UDP-N-acetylglucosamine 5-inverting 4,6-dehydratase; PseB; UDP-N-acetylglucosamine hydro-lyase (inverting; UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose-forming)
Systematic name: UDP-N-acetyl-α-D-glucosamine hydro-lyase (inverting; UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose-forming)
Comments: Contains NADP+ as a cofactor. This is the first enzyme in the biosynthetic pathway of pseudaminic acid [3], a sialic-acid-like sugar that is unique to bacteria and is used by Helicobacter pylori to modify its flagellin. This enzyme plays a critical role in H. pylori’s pathogenesis, being involved in the synthesis of both functional flagella and lipopolysaccharides [1,2]. It is completely inhibited by UDP-α-D-galactose. The reaction results in the chirality of the C-5 atom being inverted. It is thought that Lys-133 acts sequentially as a catalytic acid, protonating the C-6 hydroxy group and as a catalytic base, abstracting the C-5 proton, resulting in the elimination of water. This enzyme belongs to the short-chain dehydrogenase/reductase family of enzymes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ishiyama, N., Creuzenet, C., Miller, W.L., Demendi, M., Anderson, E.M., Harauz, G., Lam, J.S. and Berghuis, A.M. Structural studies of FlaA1 from Helicobacter pylori reveal the mechanism for inverting 4,6-dehydratase activity. J. Biol. Chem. 281 (2006) 24489–24495. [DOI] [PMID: 16651261]
2.  Schirm, M., Soo, E.C., Aubry, A.J., Austin, J., Thibault, P. and Logan, S.M. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48 (2003) 1579–1592. [DOI] [PMID: 12791140]
3.  Schoenhofen, I.C., McNally, D.J., Brisson, J.R. and Logan, S.M. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16 (2006) 8C–14C. [DOI] [PMID: 16751642]
[EC 4.2.1.115 created 2009]
 
 
EC 4.2.1.140     
Accepted name: gluconate/galactonate dehydratase
Reaction: (1) D-gluconate = 2-dehydro-3-deoxy-D-gluconate + H2O
(2) D-galactonate = 2-dehydro-3-deoxy-D-galactonate + H2O
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): gluconate dehydratase (ambiguous); Sso3198 (gene name); Pto0485 (gene name)
Systematic name: D-gluconate/D-galactonate hydro-lyase
Comments: The enzyme is involved in glucose and galactose catabolism via the nonphosphorylative variant of the Entner-Doudoroff pathway in Picrophilus torridus [3] and via the branched variant of the Entner-Doudoroff pathway in Sulfolobus solfataricus [1,2]. In vitro it utilizes D-gluconate with 6-10 fold higher catalytic efficiency than D-galactonate [1,3]. It requires Mg2+ for activity [1,2]. cf. EC 4.2.1.6, galactonate dehydratase, and EC 4.2.1.39, gluconate dehydratase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lamble, H.J., Milburn, C.C., Taylor, G.L., Hough, D.W. and Danson, M.J. Gluconate dehydratase from the promiscuous Entner-Doudoroff pathway in Sulfolobus solfataricus. FEBS Lett. 576 (2004) 133–136. [DOI] [PMID: 15474024]
2.  Ahmed, H., Ettema, T.J., Tjaden, B., Geerling, A.C., van der Oost, J. and Siebers, B. The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem. J. 390 (2005) 529–540. [DOI] [PMID: 15869466]
3.  Reher, M., Fuhrer, T., Bott, M. and Schonheit, P. The nonphosphorylative Entner-Doudoroff pathway in the thermoacidophilic euryarchaeon Picrophilus torridus involves a novel 2-keto-3-deoxygluconate- specific aldolase. J. Bacteriol. 192 (2010) 964–974. [DOI] [PMID: 20023024]
[EC 4.2.1.140 created 2013]
 
 
EC 5.1.3.2     
Accepted name: UDP-glucose 4-epimerase
Reaction: UDP-α-D-glucose = UDP-α-D-galactose
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): UDP-galactose 4-epimerase; uridine diphosphoglucose epimerase; galactowaldenase; UDPG-4-epimerase; uridine diphosphate galactose 4-epimerase; uridine diphospho-galactose-4-epimerase; UDP-glucose epimerase; 4-epimerase; uridine diphosphoglucose 4-epimerase; uridine diphosphate glucose 4-epimerase; UDP-D-galactose 4-epimerase
Systematic name: UDP-α-D-glucose 4-epimerase
Comments: Requires NAD+. Also acts on UDP-2-deoxyglucose.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9032-89-7
References:
1.  Leloir, L.F. Enzymic isomerization and related processes. Adv. Enzymol. Relat. Subj. Biochem. 14 (1953) 193–218. [PMID: 13057717]
2.  Maxwell, E.S. and de Robichon-Szulmajster, H. Purification of uridine diphosphate galactose-4-epimerase from yeast and the identification of protein-bound diphosphopyridine nucleotide. J. Biol. Chem. 235 (1960) 308–312.
3.  Wilson, D.B. and Hogness, D.S. The enzymes of the galactose operon in Escherichia coli. I. Purification and characterization of uridine diphosphogalactose 4-epimerase. J. Biol. Chem. 239 (1964) 2469–2481. [PMID: 14235524]
[EC 5.1.3.2 created 1961]
 
 
EC 5.1.3.3     
Accepted name: aldose 1-epimerase
Reaction: α-D-glucose = β-D-glucose
Other name(s): mutarotase; aldose mutarotase; galactose mutarotase; galactose 1-epimerase; D-galactose 1-epimerase
Systematic name: aldose 1-epimerase
Comments: Also acts on L-arabinose, D-xylose, D-galactose, maltose and lactose. This enzyme catalyses the first step in galactose metabolism by converting β-D-galactose into α-D-galactose, which is the substrate for EC 2.7.1.6, galactokinase [5,6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-76-9
References:
1.  Bentley, R. and Bhate, D.S. Mutarotase from Penicillium notatum. I. Purification, assay, and general properties of the enzyme. J. Biol. Chem. 235 (1960) 1219–1224. [PMID: 13799037]
2.  Bentley, R. and Bhate, D.S. Mutarotase from Penicillium notatum. II. The mechanism of the mutarotation reaction. J. Biol. Chem. 235 (1960) 1225–1233. [PMID: 13799038]
3.  Keilin, D. and Hartree, E.F. Biological catalysis of mutarotation of glucose. Biochem. J. 50 (1952) 341–348. [PMID: 14915955]
4.  Levy, G.B. and Cook, E.S. A rotographic study of mutarotase. Biochem. J. 57 (1954) 50–55. [PMID: 13159947]
5.  Beebe, J.A. and Frey, P.A. Galactose mutarotase: purification, characterization, and investigations of two important histidine residues. Biochemistry 37 (1998) 14989–14997. [DOI] [PMID: 9778377]
6.  Thoden, J.B., Timson, D.J., Reece, R.J. and Holden, H.M. Molecular structure of human galactose mutarotase. J. Biol. Chem. 279 (2004) 23431–23437. [DOI] [PMID: 15026423]
7.  Thoden, J.B., Kim, J., Raushel, F.M. and Holden, H.M. The catalytic mechanism of galactose mutarotase. Protein Sci. 12 (2003) 1051–1059. [DOI] [PMID: 12717027]
[EC 5.1.3.3 created 1961]
 
 
EC 5.1.3.18     
Accepted name: GDP-mannose 3,5-epimerase
Reaction: (1) GDP-α-D-mannose = GDP-β-L-galactose
(2) GDP-α-D-mannose = GDP-β-L-gulose
Other name(s): GME (gene name); GDP-D-mannose:GDP-L-galactose epimerase; guanosine 5′-diphosphate D-mannose:guanosine 5′-diphosphate L-galactose epimerase
Systematic name: GDP-α-D-mannose 3,5-epimerase
Comments: The enzyme catalyses the formation of the stable intermediate GDP-β-L-gulose as well as GDP-β-L-galactose. The reaction proceeds by C4′ oxidation of GDP-α-D-mannose followed by epimerization of the C5′ position to give GDP-β-L-4-dehydro-gulose. This intermediate is either reduced to give GDP-β-L-gulose or the C3′ position is epimerized to give GDP-β-L-4-dehydro-galactose, followed by C4′ reduction to yield GDP-β-L-galactose. Both products serve as intermediates in two different variants of plant L-ascorbate biosynthesis pathways.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 72162-82-4
References:
1.  Hebda, P.A., Behrman, E.J. and Barber, G.A. The guanosine 5′-diphosphate D-mannose: guanosine 5′-diphosphate L-galactose epimerase of Chlorella pyrenoidosa. Chemical synthesis of guanosine 5′-diphosphate L-galactose and further studies of the enzyme and the reaction it catalyzes. Arch. Biochem. Biophys. 194 (1979) 496–502. [DOI] [PMID: 443816]
2.  Barber, G.A. and Hebda, P.A. GDP-D-mannose: GDP-L-galactose epimerase from Chlorella pyrenoidosa. Methods Enzymol. 83 (1982) 522–525. [PMID: 7098948]
3.  Wolucka, B.A., Persiau, G., Van Doorsselaere, J., Davey, M.W., Demol, H., Vandekerckhove, J., Van Montagu, M., Zabeau, M. and Boerjan, W. Partial purification and identification of GDP-mannose 3",5"-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc. Natl. Acad. Sci. USA 98 (2001) 14843–14848. [PMID: 11752432]
4.  Major, L.L., Wolucka, B.A. and Naismith, J.H. Structure and function of GDP-mannose-3′,5′-epimerase: an enzyme which performs three chemical reactions at the same active site. J. Am. Chem. Soc. 127 (2005) 18309–18320. [PMID: 16366586]
5.  Watanabe, K., Suzuki, K. and Kitamura, S. Characterization of a GDP-D-mannose 3′′,5′′-epimerase from rice. Phytochemistry 67 (2006) 338–346. [PMID: 16413588]
[EC 5.1.3.18 created 1986, modified 2020]
 
 
EC 5.1.3.21     
Accepted name: maltose epimerase
Reaction: α-maltose = β-maltose
Systematic name: maltose 1-epimerase
Comments: The enzyme catalyses the interconversion of α and β anomers of maltose more effectively than those of disaccharides such as lactose and cellobiose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 166799-98-0
References:
1.  Shirokane, Y. and Suzuki, M. A novel enzyme, maltose 1-epimerase from Lactobacillus brevis IFO 3345. FEBS Lett. 367 (1995) 177–179. [DOI] [PMID: 7796915]
[EC 5.1.3.21 created 2002]
 
 
EC 5.1.3.43     
Accepted name: sulfoquinovose mutarotase
Reaction: 6-sulfo-α-D-quinovose = 6-sulfo-β-D-quinovose
Systematic name: 6-sulfo-D-quinovose 1-epimerase
Comments: The enzyme is found in bacteria that possess sulfoglycolytic pathways. The enzyme can also act on other aldohexoses such as D-galactose, D-glucose, D-glucose-6-phosphate, and D-glucuronate, but with lower efficiency. Does not act on D-mannose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Abayakoon, P., Lingford, J.P., Jin, Y., Bengt, C., Davies, G.J., Yao, S., Goddard-Borger, E.D. and Williams, S.J. Discovery and characterization of a sulfoquinovose mutarotase using kinetic analysis at equilibrium by exchange spectroscopy. Biochem. J. 475 (2018) 1371–1383. [PMID: 29535276]
[EC 5.1.3.43 created 2019]
 
 
EC 5.3.1.4     
Accepted name: L-arabinose isomerase
Reaction: β-L-arabinopyranose = L-ribulose
For diagram of L-Arabinose catabolism, click here
Other name(s): L-arabinose ketol-isomerase; araA (gene name)
Systematic name: β-L-arabinopyranose aldose-ketose-isomerase
Comments: Requires a divalent metal ion (the enzyme from the bacterium Escherichia coli prefers Mn2+) [2]. The enzyme binds β-L-arabinopyranose [4] and catalyses ring opening to generate a form of open-chain conformation that facilitates the isomerization reaction, which proceeds via an ene-diol mechanism [6]. The enzyme can also convert α-D-galactose to D-tagatose with lower efficiency [5].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9023-80-7
References:
1.  Heath, E.C., Horecker, B.L., Smyrniotis, P.Z. and Takagi, Y. Pentose formation by Lactobacillus plantarum. II. L-Arabinose isomerase. J. Biol. Chem. 231 (1958) 1031–1037. [PMID: 13539034]
2.  Patrick, J.W. and Lee, N. Purification and properties of an L-arabinose isomerase from Escherichia coli. J. Biol. Chem. 243 (1968) 4312–4318. [PMID: 4878429]
3.  Nakamatu, T. and Yamanaka, K. Crystallization and properties of L-arabinose isomerase from Lactobacillus gayonii. Biochim. Biophys. Acta 178 (1969) 156–165. [DOI] [PMID: 5773448]
4.  Schray, K.J. and Rose, I.A. Anomeric specificity and mechanism of two pentose isomerases. Biochemistry 10 (1971) 1058–1062. [DOI] [PMID: 5550812]
5.  Cheetham, P.S.J. and Wootton, A.N. Bioconversion of D-galactose into D-tagatose. Enzyme and Microbial Technology 15 (1993) 105–108.
6.  Banerjee, S., Anderson, F. and Farber, G.K. The evolution of sugar isomerases. Protein Eng. 8 (1995) 1189–1195. [DOI] [PMID: 8869631]
7.  Manjasetty, B.A. and Chance, M.R. Crystal structure of Escherichia coli L-arabinose isomerase (ECAI), the putative target of biological tagatose production. J. Mol. Biol. 360 (2006) 297–309. [DOI] [PMID: 16756997]
[EC 5.3.1.4 created 1961, modified 2022]
 
 
EC 5.3.1.25     
Accepted name: L-fucose isomerase
Reaction: L-fucopyranose = L-fuculose
Systematic name: L-fucose aldose-ketose-isomerase
Comments: Requires a divalent metal ion (the enzyme from the bacterium Escherichia coli prefers Mn2+). The enzyme binds the closed form of the sugar and catalyses ring opening to generate a form of open-chain conformation that facilitates the isomerization reaction, which proceeds via an ene-diol mechanism [3]. The enzyme from Escherichia coli can also convert D-arabinose to D-ribulose [1]. The enzyme from the thermophilic bacterium Caldicellulosiruptor saccharolyticus also converts D-altrose to D-psicose and L-galactose to L-tagatose [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60063-83-4
References:
1.  Green, M. and Cohen, S.S. Enzymatic conversion of L-fucose to L-fuculose. J. Biol. Chem. 219 (1956) 557–568. [PMID: 13319278]
2.  Lu, Z., Lin, E.C.C. The nucleotide sequence of Escherichia coli genes for L-fucose dissimilation. Nucleic Acids Res. 17 (1989) 4883–4884. [DOI] [PMID: 2664711]
3.  Seemann, J.E. and Schulz, G.E. Structure and mechanism of L-fucose isomerase from Escherichia coli. J. Mol. Biol. 273 (1997) 256–268. [DOI] [PMID: 9367760]
4.  Ju, Y.H. and Oh, D.K. Characterization of a recombinant L-fucose isomerase from Caldicellulosiruptor saccharolyticus that isomerizes L-fucose, D-arabinose, D-altrose, and L-galactose. Biotechnol. Lett. 32 (2010) 299–304. [DOI] [PMID: 19856146]
[EC 5.3.1.25 created 1999]
 
 
EC 5.3.1.26     
Accepted name: galactose-6-phosphate isomerase
Reaction: D-galactose 6-phosphate = D-tagatose 6-phosphate
Systematic name: D-galactose-6-phosphate aldose-ketose-isomerase
Comments: Involved in the tagatose 6-phosphate pathway of lactose catabolism in bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 39433-98-2
References:
1.  De Vos, W.M., Boerrigter, I., Van Rooijen, R.J., Reiche, B., Hengstenberg, W. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J. Biol. Chem. 265 (1990) 22554–22560. [PMID: 2125052]
2.  Van Rooijen, R.J., Van Schalkwijk, S., De Vos, W.M. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem. 266 (1991) 7176–7181. [PMID: 1901863]
[EC 5.3.1.26 created 1999]
 
 
EC 5.3.2.3     
Accepted name: TDP-4-oxo-6-deoxy-α-D-glucose-3,4-oxoisomerase (dTDP-3-dehydro-6-deoxy-α-D-galactopyranose-forming)
Reaction: dTDP-4-dehydro-6-deoxy-α-D-glucopyranose = dTDP-3-dehydro-6-deoxy-α-D-galactopyranose
For diagram of dTDP-Fuc3NAc and dTDP-Fuc4NAc biosynthesis, click here
Other name(s): dTDP-6-deoxy-hex-4-ulose isomerase; TDP-6-deoxy-hex-4-ulose isomerase; FdtA
Systematic name: dTDP-4-dehydro-6-deoxy-α-D-glucopyranose:dTDP-3-dehydro-6-deoxy-α-D-galactopyranose isomerase
Comments: The enzyme is involved in the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose. Four moieties of α-D-rhamnose and two moities of 3-acetamido-3,6-dideoxy-α-D-galactose form the repeating unit of the glycan chain in the S-layer of the bacterium Aneurinibacillus thermoaerophilus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pfoestl, A., Hofinger, A., Kosma, P. and Messner, P. Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose in Aneurinibacillus thermoaerophilus L420-91T. J. Biol. Chem. 278 (2003) 26410–26417. [DOI] [PMID: 12740380]
2.  Davis, M.L., Thoden, J.B. and Holden, H.M. The x-ray structure of dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase. J. Biol. Chem. 282 (2007) 19227–19236. [DOI] [PMID: 17459872]
[EC 5.3.2.3 created 2011]
 
 
EC 5.4.2.2     
Accepted name: phosphoglucomutase (α-D-glucose-1,6-bisphosphate-dependent)
Reaction: α-D-glucose 1-phosphate = D-glucose 6-phosphate
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): glucose phosphomutase (ambiguous); phosphoglucose mutase (ambiguous)
Systematic name: α-D-glucose 1,6-phosphomutase
Comments: Maximum activity is only obtained in the presence of α-D-glucose 1,6-bisphosphate. This bisphosphate is an intermediate in the reaction, being formed by transfer of a phosphate residue from the enzyme to the substrate, but the dissociation of bisphosphate from the enzyme complex is much slower than the overall isomerization. The enzyme also catalyses (more slowly) the interconversion of 1-phosphate and 6-phosphate isomers of many other α-D-hexoses, and the interconversion of α-D-ribose 1-phosphate and 5-phosphate. cf. EC 5.4.2.5, phosphoglucomutase (glucose-cofactor).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-81-4
References:
1.  Joshi, J.G. and Handler, P. Phosphoglucomutase. I. Purification and properties of phosphoglucomutase from Escherichia coli. J. Biol. Chem. 239 (1964) 2741–2751. [PMID: 14216423]
2.  Najjar, V.A. Phosphoglucomutase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 6, Academic Press, New York, 1962, pp. 161–178.
3.  Ray, W.J. and Roscelli, G.A. A kinetic study of the phosphoglucomutase pathway. J. Biol. Chem. 239 (1964) 1228–1236. [PMID: 14165931]
4.  Ray, W.J., Jr. and Peck, E.J., Jr. Phosphomutases. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 6, 1972, pp. 407–477.
5.  Sutherland, E.W., Cohn, M., Posternak, T. and Cori, C.F. The mechanism of the phosphoglucomutase reaction. J. Biol. Chem. 180 (1949) 1285–1295. [PMID: 18148026]
[EC 5.4.2.2 created 1961 as EC 2.7.5.1, transferred 1984 to EC 5.4.2.2]
 
 
EC 5.4.99.9     
Accepted name: UDP-galactopyranose mutase
Reaction: UDP-α-D-galactopyranose = UDP-α-D-galactofuranose
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): UGM; UDP-D-galactopyranose furanomutase
Systematic name: UDP-α-D-galactopyranose furanomutase
Comments: A flavoenzyme which generates UDP-α-D-glactofuranose required for cell wall formation in bacteria, fungi, and protozoa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 174632-18-9
References:
1.  Trejo, A.G., Chittenden, G.J.F., Buchanan, J.G. and Baddiley, J. Uridine diphosphate α-D-galactofuranose, an intermediate in the biosynthesis of galactofuranosyl residues. Biochem. J. 117 (1970) 637–639. [PMID: 5419754]
2.  Karunan Partha, S., Bonderoff, S.A., van Straaten, K.E. and Sanders, D.A. Expression, purification and preliminary X-ray crystallographic analysis of UDP-galactopyranose mutase from Deinococcus radiodurans. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 (2009) 843–845. [DOI] [PMID: 19652355]
3.  Dhatwalia, R., Singh, H., Oppenheimer, M., Karr, D.B., Nix, J.C., Sobrado, P. and Tanner, J.J. Crystal structures and small-angle x-ray scattering analysis of UDP-galactopyranose mutase from the pathogenic fungus Aspergillus fumigatus. J. Biol. Chem. 287 (2012) 9041–9051. [DOI] [PMID: 22294687]
4.  van Straaten, K.E., Routier, F.H. and Sanders, D.A. Towards the crystal structure elucidation of eukaryotic UDP-galactopyranose mutase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 (2012) 455–459. [DOI] [PMID: 22505419]
[EC 5.4.99.9 created 1984, modified 2012]
 
 
EC 5.5.1.25     
Accepted name: 3,6-anhydro-L-galactonate cycloisomerase
Reaction: 3,6-anhydro-L-galactonate = 2-dehydro-3-deoxy-L-galactonate
Other name(s): 3,6-anhydro-α-L-galactonate lyase (ring-opening); 3,6-anhydro-α-L-galactonate cycloisomerase
Systematic name: 3,6-anhydro-L-galactonate lyase (ring-opening)
Comments: The enzyme, characterized from the marine bacteria Vibrio sp. EJY3 and Postechiella marina M091, is involved in a degradation pathway for 3,6-anhydro-α-L-galactopyranose, a major component of the polysaccharides of red macroalgae.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Yun, E.J., Lee, S., Kim, H.T., Pelton, J.G., Kim, S., Ko, H.J., Choi, I.G. and Kim, K.H. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17 (2015) 1677–1688. [DOI] [PMID: 25156229]
2.  Lee, S.B., Cho, S.J., Kim, J.A., Lee, S.Y., Kim, S.M. and Lim, H.S. Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess Eng. 19 (2014) 866–878.
[EC 5.5.1.25 created 2014, modified 2015]
 
 
EC 7.5.2.2     
Accepted name: ABC-type oligosaccharide transporter
Reaction: ATP + H2O + oligosaccharide-[oligosaccharide-binding protein][side 1] = ADP + phosphate + oligosaccharide[side 2] + [oligosaccharide-binding protein][side 1]
Other name(s): oligosaccharide-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, oligosaccharide-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the import of lactose, melibiose and raffinose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Higgins, C.F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8 (1992) 67–113. [DOI] [PMID: 1282354]
2.  Williams, S.G., Greenwood, J.A. and Jones, C.W. Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and β-galactosidase in Agrobacterium radiobacter. Mol. Microbiol. 6 (1992) 1755–1768. [DOI] [PMID: 1630315]
3.  Tam, R. and Saier, M.H., Jr. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57 (1993) 320–346. [PMID: 8336670]
4.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
5.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
[EC 7.5.2.2 created 2000 as EC 3.6.3.18, transferred 2018 to EC 7.5.2.2]
 
 
EC 7.5.2.11     
Accepted name: ABC-type D-galactose transporter
Reaction: ATP + H2O + D-galactose-[galactose-binding protein][side 1] = ADP + phosphate + D-galactose[side 2] + [galactose-binding protein][side 1]
Other name(s): D-galactose transporting ATPase; D-galactose ABC transporter; mglBAC (gene names)
Systematic name: ATP phosphohydrolase (ABC-type, D-galactose-importing)
Comments: ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme, best characterized from Escherichia coli where it interacts with a periplasmic substrate binding protein and mediates the high affinity uptake of D-galactose and methyl-β-D-galactoside.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hogg, R.W., Voelker, C. and Von Carlowitz, I. Nucleotide sequence and analysis of the mgl operon of Escherichia coli K12. Mol. Gen. Genet. 229 (1991) 453–459. [PMID: 1719366]
[EC 7.5.2.11 created 2019]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald