The Enzyme Database

Your query returned 4 entries.    printer_iconPrintable version



EC 1.2.1.80     
Accepted name: long-chain acyl-[acyl-carrier-protein] reductase
Reaction: a long-chain aldehyde + an [acyl-carrier protein] + NAD(P)+ = a long-chain acyl-[acyl-carrier protein] + NAD(P)H + H+
Glossary: a long-chain aldehyde = an aldehyde derived from a fatty acid with an aliphatic chain of 13-22 carbons.
an [acyl-carrier protein] = ACP = [acp]
Other name(s): long-chain acyl-[acp] reductase; fatty acyl-[acyl-carrier-protein] reductase; acyl-[acp] reductase
Systematic name: long-chain-aldehyde:NAD(P)+ oxidoreductase (acyl-[acyl-carrier protein]-forming)
Comments: Catalyses the reaction in the opposite direction. This enzyme, purified from the cyanobacterium Synechococcus elongatus PCC 7942, catalyses the NAD(P)H-dependent reduction of an activated fatty acid (acyl-[acp]) to the corresponding aldehyde. Together with EC 4.1.99.5, octadecanal decarbonylase, it is involved in alkane biosynthesis. The natural substrates of the enzyme are C16 and C18 activated fatty acids. Requires Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schirmer, A., Rude, M.A., Li, X., Popova, E. and del Cardayre, S.B. Microbial biosynthesis of alkanes. Science 329 (2010) 559–562. [DOI] [PMID: 20671186]
[EC 1.2.1.80 created 2011]
 
 
EC 1.14.14.46     
Accepted name: pimeloyl-[acyl-carrier protein] synthase
Reaction: a long-chain acyl-[acyl-carrier protein] + 2 reduced flavodoxin + 3 O2 = pimeloyl-[acyl-carrier protein] + an n-alkanal + 2 oxidized flavodoxin + 3 H2O (overall reaction)
(1a) a long-chain acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a (7S)-7-hydroxy-long-chain-acyl-[acyl-carrier protein] + oxidized flavodoxin + H2O
(1b) a (7S)-7-hydroxy-long-chain-acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a (7R,8R)-7,8-dihydroxy-long-chain-acyl-[acyl-carrier protein] + oxidized flavodoxin + H2O
(1c) a (7R,8R)-7,8-dihydroxy-long-chain-acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a 7-oxoheptanoyl-[acyl-carrier protein] + an n-alkanal + oxidized flavodoxin + 2 H2O
(1d) a 7-oxoheptanoyl-[acyl-carrier protein] + oxidized flavodoxin + H2O = a pimeloyl-[acyl-carrier protein] + reduced flavodoxin + H+
Glossary: a long-chain acyl-[acyl-carrier protein] = an acyl-[acyl-carrier protein] thioester where the acyl chain contains 13 to 22 carbon atoms.
palmitoyl-[acyl-carrier protein] = hexadecanoyl-[acyl-carrier protein]
pimeloyl-[acyl-carrier protein] = 6-carboxyhexanoyl-[acyl-carrier protein]
Other name(s): bioI (gene name); P450BioI; CYP107H1
Systematic name: acyl-[acyl-carrier protein],reduced-flavodoxin:oxygen oxidoreductase (pimeloyl-[acyl-carrier protein]-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme catalyses an oxidative C-C bond cleavage of long-chain acyl-[acyl-carrier protein]s of various lengths to generate pimeloyl-[acyl-carrier protein], an intermediate in the biosynthesis of biotin. The preferred substrate of the enzyme from the bacterium Bacillus subtilis is palmitoyl-[acyl-carrier protein] which then gives heptanal as the alkanal. The mechanism is similar to EC 1.14.15.6, cholesterol monooxygenase (side-chain-cleaving), followed by a hydroxylation step, which may occur spontaneously [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Stok, J.E. and De Voss, J. Expression, purification, and characterization of BioI: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch. Biochem. Biophys. 384 (2000) 351–360. [DOI] [PMID: 11368323]
2.  Cryle, M.J. and De Voss, J.J. Carbon-carbon bond cleavage by cytochrome p450(BioI)(CYP107H1). Chem. Commun. (Camb.) (2004) 86–87. [DOI] [PMID: 14737344]
3.  Cryle, M.J. and Schlichting, I. Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc. Natl. Acad. Sci. USA 105 (2008) 15696–15701. [DOI] [PMID: 18838690]
4.  Cryle, M.J. Selectivity in a barren landscape: the P450(BioI)-ACP complex. Biochem. Soc. Trans. 38 (2010) 934–939. [DOI] [PMID: 20658980]
[EC 1.14.14.46 created 2013 as EC 1.14.15.12, transferred 2017 to EC 1.14.14.46]
 
 
EC 1.14.15.12      
Transferred entry: pimeloyl-[acyl-carrier protein] synthase. Now EC 1.14.14.46, pimeloyl-[acyl-carrier protein] synthase
[EC 1.14.15.12 created 2013, deleted 2017]
 
 
EC 6.2.1.20     
Accepted name: long-chain-fatty-acid—[acyl-carrier-protein] ligase
Reaction: ATP + a long-chain fatty acid + an [acyl-carrier protein] = AMP + diphosphate + a long-chain acyl-[acyl-carrier protein]
Other name(s): acyl-[acyl-carrier-protein] synthetase (ambiguous); acyl-ACP synthetase (ambiguous); stearoyl-ACP synthetase; acyl-acyl carrier protein synthetase (ambiguous); long-chain-fatty-acid:[acyl-carrier-protein] ligase (AMP-forming)
Systematic name: long-chain-fatty-acid:[acyl-carrier protein] ligase (AMP-forming)
Comments: The enzyme ligates long chain fatty acids (with aliphatic chain of 13-22 carbons) to an acyl-carrier protein. Not identical with EC 6.2.1.3 long-chain-fatty-acid—CoA ligase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77322-37-3
References:
1.  Ray, T.K. and Cronan, J.E., Jr. Activation of long chain fatty acids with acyl carrier protein: demonstration of a new enzyme, acyl-acyl carrier protein synthetase, in Escherichia coli. Proc. Natl. Acad. Sci. USA 73 (1976) 4374–4378. [DOI] [PMID: 794875]
2.  Kaczmarzyk, D. and Fulda, M. Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol. 152 (2010) 1598–1610. [DOI] [PMID: 20061450]
[EC 6.2.1.20 created 1986]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald