The Enzyme Database

Your query returned 13 entries.    printer_iconPrintable version

EC 1.2.7.12     
Accepted name: formylmethanofuran dehydrogenase
Reaction: a formylmethanofuran + H2O + 2 oxidized ferredoxin [iron-sulfur] cluster = CO2 + a methanofuran + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
For diagram of methane biosynthesis, click here
Glossary: methanofuran a = 4-[4-(2-{[(4R*,5S*)-4,5,7-tricarboxyheptanoyl]-γ-L-glutamyl-γ-L-glutamylamino}ethyl)phenoxymethyl]furan-2-ylmethanamine
Other name(s): formylmethanofuran:acceptor oxidoreductase
Systematic name: formylmethanofuran:ferredoxin oxidoreductase
Comments: Contains a molybdopterin cofactor and numerous [4Fe-4S] clusters. In some organisms an additional subunit enables the incorporation of tungsten when molybdenum availability is low. The enzyme catalyses a reversible reaction in methanogenic archaea, and is involved in methanogenesis from CO2 as well as the oxidation of coenzyme M to CO2. The reaction is endergonic, and is driven by coupling with the soluble CoB-CoM heterodisulfide reductase via electron bifurcation.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 119940-12-4
References:
1.  Karrasch, M., Börner, G., Enssle, M. and Thauer, R.K. The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur. J. Biochem. 194 (1990) 367–372. [DOI] [PMID: 2125267]
2.  Bertram, P.A., Schmitz, R.A., Linder, D. and Thauer, R.K. Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase. Arch. Microbiol. 161 (1994) 220–228. [PMID: 8161283]
3.  Bertram, P.A., Karrasch, M., Schmitz, R.A., Bocher, R., Albracht, S.P. and Thauer, R.K. Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins. Eur. J. Biochem. 220 (1994) 477–484. [DOI] [PMID: 8125106]
4.  Vorholt, J.A. and Thauer, R.K. The active species of ’CO2’ utilized by formylmethanofuran dehydrogenase from methanogenic Archaea. Eur. J. Biochem. 248 (1997) 919–924. [DOI] [PMID: 9342247]
5.  Meuer, J., Kuettner, H.C., Zhang, J.K., Hedderich, R. and Metcalf, W.W. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. USA 99 (2002) 5632–5637. [DOI] [PMID: 11929975]
6.  Kaster, A.K., Moll, J., Parey, K. and Thauer, R.K. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl. Acad. Sci. USA 108 (2011) 2981–2986. [DOI] [PMID: 21262829]
7.  Wagner, T., Ermler, U. and Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354 (2016) 114–117. [PMID: 27846502]
[EC 1.2.7.12 created 1992 as EC 1.2.99.5, transferred 2017 to EC 1.2.7.12]
 
 
EC 1.2.99.5      
Transferred entry: formylmethanofuran dehydrogenase. Now EC 1.2.7.12, formylmethanofuran dehydrogenase
[EC 1.2.99.5 created 1992, deleted 2017]
 
 
EC 1.2.99.8     
Accepted name: glyceraldehyde dehydrogenase (FAD-containing)
Reaction: D-glyceraldehyde + H2O + acceptor = D-glycerate + reduced acceptor
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): glyceraldehyde oxidoreductase
Systematic name: D-glyceraldehyde:acceptor oxidoreductase (FAD-containing)
Comments: The enzyme from the archaeon Sulfolobus acidocaldarius catalyses the oxidation of D-glyceraldehyde in the nonphosphorylative Entner-Doudoroff pathway. With 2,6-dichlorophenolindophenol as artificial electron acceptor, the enzyme shows a broad substrate range, but is most active with D-glyceraldehyde. It is not known which acceptor is utilized in vivo. The iron-sulfur protein contains FAD and molybdopterin guanine dinucleotide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kardinahl, S., Schmidt, C.L., Hansen, T., Anemuller, S., Petersen, A. and Schafer, G. The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme—an aldehyde oxidoreductase. Eur. J. Biochem. 260 (1999) 540–548. [DOI] [PMID: 10095793]
[EC 1.2.99.8 created 2013]
 
 
EC 2.7.7.76     
Accepted name: molybdenum cofactor cytidylyltransferase
Reaction: CTP + molybdenum cofactor = diphosphate + cytidylyl molybdenum cofactor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MocA; CTP:molybdopterin cytidylyltransferase; MoCo cytidylyltransferase; Mo-MPT cytidyltransferase
Systematic name: CTP:molybdenum cofactor cytidylyltransferase
Comments: Catalyses the cytidylation of the molybdenum cofactor. This modification occurs only in prokaryotes. Divalent cations such as Mg2+ or Mn2+ are required for activity. ATP or GTP cannot replace CTP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Neumann, M., Mittelstadt, G., Seduk, F., Iobbi-Nivol, C. and Leimkuhler, S. MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli. J. Biol. Chem. 284 (2009) 21891–21898. [DOI] [PMID: 19542235]
2.  Neumann, M., Seduk, F., Iobbi-Nivol, C. and Leimkuhler, S. Molybdopterin dinucleotide biosynthesis in Escherichia coli: Identification of amino acid residues of molybdopterin dinucleotide transferases that determine specificity for binding of guanine or cytosine nucleotides. J. Biol. Chem. 286 (2011) 1400–1408. [DOI] [PMID: 21081498]
[EC 2.7.7.76 created 2011]
 
 
EC 2.7.7.77     
Accepted name: molybdenum cofactor guanylyltransferase
Reaction: GTP + molybdenum cofactor = diphosphate + guanylyl molybdenum cofactor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MobA; MoCo guanylyltransferase
Systematic name: GTP:molybdenum cofactor guanylyltransferase
Comments: Catalyses the guanylation of the molybdenum cofactor. This modification occurs only in prokaryotes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lake, M.W., Temple, C.A., Rajagopalan, K.V. and Schindelin, H. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J. Biol. Chem. 275 (2000) 40211–40217. [DOI] [PMID: 10978347]
2.  Temple, C.A. and Rajagopalan, K.V. Mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase. J. Biol. Chem. 275 (2000) 40202–40210. [DOI] [PMID: 10978348]
3.  Guse, A., Stevenson, C.E., Kuper, J., Buchanan, G., Schwarz, G., Giordano, G., Magalon, A., Mendel, R.R., Lawson, D.M. and Palmer, T. Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA. J. Biol. Chem. 278 (2003) 25302–25307. [DOI] [PMID: 12719427]
[EC 2.7.7.77 created 2011]
 
 
EC 2.8.1.9     
Accepted name: molybdenum cofactor sulfurtransferase
Reaction: molybdenum cofactor + L-cysteine + reduced acceptor + 2 H+ = thio-molybdenum cofactor + L-alanine + H2O + oxidized acceptor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): molybdenum cofactor sulfurase; ABA3; HMCS; MoCo sulfurase; MoCo sulfurtransferase
Systematic name: L-cysteine:molybdenum cofactor sulfurtransferase
Comments: Contains pyridoxal phosphate. Replaces the equatorial oxo ligand of the molybdenum by sulfur via an enzyme-bound persulfide. The reaction occurs in prokaryotes and eukaryotes but MoCo sulfurtransferases are only found in eukaryotes. In prokaryotes the reaction is catalysed by two enzymes: cysteine desulfurase (EC 2.8.1.7), which is homologous to the N-terminus of eukaryotic MoCo sulfurtransferases, and a molybdo-enzyme specific chaperone which binds the MoCo and acts as an adapter protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bittner, F., Oreb, M. and Mendel, R.R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276 (2001) 40381–40384. [DOI] [PMID: 11553608]
2.  Heidenreich, T., Wollers, S., Mendel, R.R. and Bittner, F. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 280 (2005) 4213–4218. [DOI] [PMID: 15561708]
3.  Wollers, S., Heidenreich, T., Zarepour, M., Zachmann, D., Kraft, C., Zhao, Y., Mendel, R.R. and Bittner, F. Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 283 (2008) 9642–9650. [DOI] [PMID: 18258600]
[EC 2.8.1.9 created 2011, modified 2015]
 
 
EC 2.8.1.12     
Accepted name: molybdopterin synthase
Reaction: cyclic pyranopterin phosphate + 2 [molybdopterin-synthase sulfur-carrier protein]-Gly-NH-CH2-C(O)SH + H2O = molybdopterin + 2 molybdopterin-synthase sulfur-carrier protein
For diagram of MoCo biosynthesis, click here
Glossary: molybdopterin = H2Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate(2-)
cyclic pyranopterin phosphate = cPMP = precursor Z = 8-amino-2,12,12-trihydroxy-4a,5a,6,9,11,11a,12,12a-octahydro[1,3,2]dioxaphosphinino[4′,5′:5,6]pyrano[3,2-g]pteridin-10(4H)-one 2-oxide = 8-amino-2,12,12-trihydroxy-4,4a,5a,6,9,10,11,11a,12,12a-decahydro-[1,3,2]dioxaphosphinino[4′,5′:5,6]pyrano[3,2-g]pteridine 2-oxide
Other name(s): MPT synthase
Systematic name: thiocarboxylated molybdopterin synthase:cyclic pyranopterin phosphate sulfurtransferase
Comments: Catalyses the synthesis of molybdopterin from cyclic pyranopterin monophosphate. Two sulfur atoms are transferred to cyclic pyranopterin monophosphate in order to form the characteristic ene-dithiol group found in the molybdenum cofactor. Molybdopterin synthase consists of two large subunits forming a central dimer and two small subunits (molybdopterin-synthase sulfur-carrier proteins) that are thiocarboxylated at the C-terminus by EC 2.8.1.11, molybdopterin synthase sulfurtransferase. The reaction occurs in prokaryotes and eukaryotes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Daniels, J.N., Wuebbens, M.M., Rajagopalan, K.V. and Schindelin, H. Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its sulfur transfer mechanism and its role in molybdenum cofactor deficiency. Biochemistry 47 (2008) 615–626. [DOI] [PMID: 18092812]
2.  Wuebbens, M.M. and Rajagopalan, K.V. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J. Biol. Chem. 278 (2003) 14523–14532. [DOI] [PMID: 12571226]
[EC 2.8.1.12 created 2011]
 
 
EC 2.10.1.1     
Accepted name: molybdopterin molybdotransferase
Reaction: adenylyl-molybdopterin + molybdate = molybdenum cofactor + AMP + H2O
For diagram of MoCo biosynthesis, click here
Glossary: molybdopterin = H2Dtpp-mP = [(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl)-4,5,5a,8,9a,10-hexahydro-1H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogen phosphate
molybdate = tetraoxidomolybdate(2-) = MoO42-
molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MoeA; Cnx1 (ambiguous)
Systematic name: adenylyl-molybdopterin:molybdate molybdate transferase (AMP-forming)
Comments: Catalyses the insertion of molybdenum into the ene-dithiol group of molybdopterin. In eukaryotes this reaction is catalysed by the N-terminal domain of a fusion protein whose C-terminal domain catalyses EC 2.7.7.75, molybdopterin adenylyltransferase. Requires divalent cations such as Mg2+ or Zn2+ for activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nichols, J.D. and Rajagopalan, K.V. In vitro molybdenum ligation to molybdopterin using purified components. J. Biol. Chem. 280 (2005) 7817–7822. [DOI] [PMID: 15632135]
2.  Nichols, J.D., Xiang, S., Schindelin, H. and Rajagopalan, K.V. Mutational analysis of Escherichia coli MoeA: two functional activities map to the active site cleft. Biochemistry 46 (2007) 78–86. [DOI] [PMID: 17198377]
3.  Llamas, A., Otte, T., Multhaup, G., Mendel, R.R. and Schwarz, G. The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J. Biol. Chem. 281 (2006) 18343–18350. [DOI] [PMID: 16636046]
[EC 2.10.1.1 created 2011]
 
 
EC 3.6.3.29      
Transferred entry: molybdate-transporting ATPase. Now EC 7.3.2.5, molybdate-transporting ATPase
[EC 3.6.3.29 created 2000, deleted 2018]
 
 
EC 3.6.3.55      
Transferred entry: tungstate-importing ATPase. Now EC 7.3.2.6, tungstate-importing ATPase
[EC 3.6.3.55 created 2013, deleted 2018]
 
 
EC 7.3.2.3     
Accepted name: ABC-type sulfate transporter
Reaction: ATP + H2O + sulfate-[sulfate-binding protein][side 1] = ADP + phosphate + sulfate[side 2] + [sulfate-binding protein][side 1]
Other name(s): sulfate ABC transporter; sulfate-transporting ATPase (ambiguous)
Systematic name: ATP phosphohydrolase (ABC-type, sulfate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme from Escherichia coli can interact with either of two periplasmic binding proteins and mediates the high affinity uptake of sulfate and thiosulfate. May also be involved in the uptake of selenite, selenate and possibly molybdate. Does not undergo phosphorylation during the transport.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sirko, A., Zatyka, M., Sadowy, E. and Hulanicka, D. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J. Bacteriol. 177 (1995) 4134–4136. [DOI] [PMID: 7608089]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
[EC 7.3.2.3 created 2000 as EC 3.6.3.25, transferred 2018 to EC 7.3.2.3]
 
 
EC 7.3.2.5     
Accepted name: ABC-type molybdate transporter
Reaction: ATP + H2O + molybdate-[molybdate-binding protein][side 1] = ADP + phosphate + molybdate[side 2] + [molybdate-binding protein][side 1]
Glossary: molybdate = tetraoxidomolybdate(2-) = MoO42-
Other name(s): molybdate ABC transporter; molybdate-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, molybdate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the high-affinity import of molybdate and tungstate. Does not undergo phosphorylation during the transport process.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
2.  Grunden, A.M. and Shanmugam, K.T. Molybdate transport and regulation in bacteria. Arch. Mikrobiol. 168 (1997) 345–354. [PMID: 9325422]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
4.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.3.2.5 created 2000 as EC 3.6.3.29, transferred 2018 to EC 7.3.2.5]
 
 
EC 7.3.2.6     
Accepted name: ABC-type tungstate transporter
Reaction: ATP + H2O + tungstate-[tungstate-binding protein][side 1] = ADP + phosphate + tungstate[side 2] + [tungstate-binding protein][side 1]
Other name(s): tungstate transporter; tungstate-importing ATPase; tungstate-specific ABC transporter; WtpABC; TupABC
Systematic name: ATP phosphohydrolase (ABC-type, tungstate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, characterized from the archaeon Pyrococcus furiosus, the Gram-positive bacterium Eubacterium acidaminophilum and the Gram-negative bacterium Campylobacter jejuni, interacts with an extracytoplasmic substrate binding protein and mediates the import of tungstate into the cell for incorporation into tungsten-dependent enzymes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Makdessi, K., Andreesen, J.R. and Pich, A. Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J. Biol. Chem. 276 (2001) 24557–24564. [DOI] [PMID: 11292832]
2.  Bevers, L.E., Hagedoorn, P.L., Krijger, G.C. and Hagen, W.R. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J. Bacteriol. 188 (2006) 6498–6505. [DOI] [PMID: 16952940]
3.  Smart, J.P., Cliff, M.J. and Kelly, D.J. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter. Mol. Microbiol. 74 (2009) 742–757. [DOI] [PMID: 19818021]
[EC 7.3.2.6 created 2013 as EC 3.6.3.55, transferred 2018 to EC 7.3.2.6]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald