The Enzyme Database

Your query returned 38 entries.    printer_iconPrintable version

EC 1.3.1.35      
Transferred entry: phosphatidylcholine desaturase. Now EC 1.14.19.22, microsomal oleoyl-lipid 12-desaturase
[EC 1.3.1.35 created 1984, deleted 2015]
 
 
EC 1.3.1.124     
Accepted name: 2,4-dienoyl-CoA reductase [(3E)-enoyl-CoA-producing]
Reaction: (1) a (3E)-3-enoyl-CoA + NADP+ = a (2E,4E)-2,4-dienoyl-CoA + NADPH + H+
(2) a (3E)-3-enoyl-CoA + NADP+ = a (2E,4Z)-2,4-dienoyl-CoA + NADPH + H+
Other name(s): SPS19 (gene name); DECR1 (gene name); DECR2 (gene name); Δ24-dienoyl-CoA reductase (ambiguous)
Systematic name: (3E)-3-enoyl-CoA:NADP+ 4-oxidoreductase
Comments: This enzyme, characterized from eukaryotic organisms, catalyses the reduction of either (2E,4E)-2,4-dienoyl-CoA or (2E,4Z)-2,4-dienoyl-CoA to (3E)-3-enoyl-CoA. The best substrates for the enzyme from bovine liver have a chain-length of 8 or 10 carbons. Mammals possess both mitochondrial and peroxisomal variants of this enzyme. cf. EC 1.3.1.34, 2,4-dienoyl-CoA reductase [(2E)-enoyl-CoA-producing].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kunau, W.-H. and Dommes, P. Degradation of unsaturated fatty acids. Identification of intermediates in the degradation of cis-4-decenoly-CoA by extracts of beef-liver mitochondria. Eur. J. Biochem. 91 (1978) 533–544. [DOI] [PMID: 729581]
2.  Dommes, V., Luster, W., Cvetanovic, M. and Kunau, W.-H. Purification by affinity chromatography of 2,4-dienoyl-CoA reductases from bovine liver and Escherichia coli. Eur. J. Biochem. 125 (1982) 335–341. [DOI] [PMID: 6749495]
3.  Gurvitz, A., Rottensteiner, H., Kilpelainen, S.H., Hartig, A., Hiltunen, J.K., Binder, M., Dawes, I.W. and Hamilton, B. The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19. J. Biol. Chem. 272 (1997) 22140–22147. [PMID: 9268358]
4.  Geisbrecht, B.V., Liang, X., Morrell, J.C., Schulz, H. and Gould, S.J. The mouse gene PDCR encodes a peroxisomal δ2, δ4-dienoyl-CoA reductase. J. Biol. Chem. 274 (1999) 25814–25820. [PMID: 10464321]
5.  De Nys, K., Meyhi, E., Mannaerts, G.P., Fransen, M. and Van Veldhoven, P.P. Characterisation of human peroxisomal 2,4-dienoyl-CoA reductase. Biochim. Biophys. Acta 1533 (2001) 66–72. [PMID: 11514237]
6.  Alphey, M.S., Yu, W., Byres, E., Li, D. and Hunter, W.N. Structure and reactivity of human mitochondrial 2,4-dienoyl-CoA reductase: enzyme-ligand interactions in a distinctive short-chain reductase active site. J. Biol. Chem. 280 (2005) 3068–3077. [PMID: 15531764]
[EC 1.3.1.124 created 2020]
 
 
EC 1.13.11.12     
Accepted name: linoleate 13S-lipoxygenase
Reaction: (1) linoleate + O2 = (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate
(2) α-linolenate + O2 = (9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
α-linolenate = (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
Other name(s): 13-lipoxidase; carotene oxidase; 13-lipoperoxidase; fat oxidase; 13-lipoxydase; lionoleate:O2 13-oxidoreductase
Systematic name: linoleate:oxygen 13-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C-13 position with (S)-configuration. This enzyme produces precursors for several important compounds, including the plant hormone jasmonic acid. EC 1.13.11.58, linoleate 9S-lipoxygenase, catalyses a similar reaction at the second available position of these fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-60-1
References:
1.  Christopher, J., Pistorius, E. and Axelrod, B. Isolation of an enzyme of soybean lipoxidase. Biochim. Biophys. Acta 198 (1970) 12–19. [DOI] [PMID: 5461103]
2.  Theorell, H., Holman, R.T. and Åkesson, Å. Crystalline lipoxidase. Acta Chem. Scand. 1 (1947) 571–576. [PMID: 18907700]
3.  Zimmerman, D.C. Specificity of flaxseed lipoxidase. Lipids 5 (1970) 392–397. [DOI] [PMID: 5447012]
4.  Royo, J., Vancanneyt, G., Perez, A.G., Sanz, C., Stormann, K., Rosahl, S. and Sanchez-Serrano, J.J. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J. Biol. Chem. 271 (1996) 21012–21019. [DOI] [PMID: 8702864]
5.  Bachmann, A., Hause, B., Maucher, H., Garbe, E., Voros, K., Weichert, H., Wasternack, C. and Feussner, I. Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol. Chem. 383 (2002) 1645–1657. [DOI] [PMID: 12452441]
[EC 1.13.11.12 created 1961 as EC 1.99.2.1, transferred 1965 to EC 1.13.1.13, transferred 1972 to EC 1.13.11.12, modified 2011, modified 2012]
 
 
EC 1.13.11.44      
Deleted entry: linoleate diol synthase. Activity is covered by EC 1.13.11.60, linoleate 8R-lipoxygenase and EC 5.4.4.6, 9,12-octadecadienoate 8-hydroperoxide 8S-isomerase.
[EC 1.13.11.44 created 2000, deleted 2011]
 
 
EC 1.13.11.45     
Accepted name: linoleate 11-lipoxygenase
Reaction: linoleate + O2 = (9Z,12Z)-(11S)-11-hydroperoxyoctadeca-9,12-dienoate
Glossary: arachidonate = (all-Z)-icosa-5,8,11,14-tetraenoate
linoleate = (9Z,12Z)-octadeca-9,12-dienoate
α-linolenate = (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
γ-linolenate = (6Z,9Z,12Z)-octadeca-6,9,12-trienoate
oleate = (Z)-octadec-9-enoate
Other name(s): linoleate dioxygenase; manganese lipoxygenase
Systematic name: linoleate:oxygen 11S-oxidoreductase
Comments: The product (9Z,12Z)-(11S)-11-hydroperoxyoctadeca-9,12-dienoate, is converted, more slowly, into (9Z,11E)-(13R)-13-hydroperoxyoctadeca-9,11-dienoate. The enzyme from the fungus Gaeumannomyces graminis requires Mn2+. It also acts on α-linolenate, whereas γ-linolenate is a poor substrate. Oleate and arachidonate are not substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hamberg, M., Su, C. and Oliw, E.H. Manganese lipoxygenase: Discovery of bis-allylic hydroperoxide as product and intermediate in a lipoxygenase reaction. J. Biol. Chem. 273 (1998) 13080–13088. [DOI] [PMID: 9582346]
2.  Oliw, E.H., Su, C., Skogstrom, T. and Benthin, G. Analysis of novel hydroperoxides and other metabolites of oleic, linoleic and linolenic acids by liquid chromatography-mass spectrometry with ion trap MSn. Lipids 33 (1998) 843–852. [DOI] [PMID: 9778131]
3.  Su, C. and Oliw, E.H. Manganese lipoxygenase: Purification and characterization. J. Biol. Chem. 273 (1998) 13072–13079. [DOI] [PMID: 9582345]
[EC 1.13.11.45 created 2000]
 
 
EC 1.13.11.58     
Accepted name: linoleate 9S-lipoxygenase
Reaction: linoleate + O2 = (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
Other name(s): 9-lipoxygenase; 9S-lipoxygenase; linoleate 9-lipoxygenase; LOX1 (gene name); 9S-LOX
Systematic name: linoleate:oxygen 9S-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C9 position with (S)-configuration. The enzyme plays a physiological role during the early stages of seedling growth. The enzyme from Arabidopsis thaliana shows comparable activity towards linoleate and linolenate [4]. EC 1.13.11.12 (linoleate 13S-lipoxygenase) catalyses a similar reaction at another position of these fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vellosillo, T., Martinez, M., Lopez, M.A., Vicente, J., Cascon, T., Dolan, L., Hamberg, M. and Castresana, C. Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19 (2007) 831–846. [DOI] [PMID: 17369372]
2.  Boeglin, W.E., Itoh, A., Zheng, Y., Coffa, G., Howe, G.A. and Brash, A.R. Investigation of substrate binding and product stereochemistry issues in two linoleate 9-lipoxygenases. Lipids 43 (2008) 979–987. [DOI] [PMID: 18795358]
3.  Andreou, A.Z., Hornung, E., Kunze, S., Rosahl, S. and Feussner, I. On the substrate binding of linoleate 9-lipoxygenases. Lipids 44 (2009) 207–215. [DOI] [PMID: 19037675]
4.  Bannenberg, G., Martinez, M., Hamberg, M. and Castresana, C. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44 (2009) 85–95. [DOI] [PMID: 18949503]
[EC 1.13.11.58 created 2011]
 
 
EC 1.13.11.60     
Accepted name: linoleate 8R-lipoxygenase
Reaction: linoleate + O2 = (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
Other name(s): linoleic acid 8R-dioxygenase; 5,8-LDS (bifunctional enzyme); 7,8-LDS (bifunctional enzyme); 5,8-linoleate diol synthase (bifunctional enzyme); 7,8-linoleate diol synthase (bifunctional enzyme); PpoA
Systematic name: linoleate:oxygen (8R)-oxidoreductase
Comments: The enzyme contains heme [1,4]. The bifunctional enzyme from Aspergillus nidulans uses different heme domains to catalyse two separate reactions. Linoleic acid is oxidized within the N-terminal heme peroxidase domain to (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate, which is subsequently isomerized by the C-terminal P-450 heme thiolate domain to (5S,8R,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate (cf. EC 5.4.4.5, 9,12-octadecadienoate 8-hydroperoxide 8R-isomerase) [1]. The bifunctional enzyme from Gaeumannomyces graminis also catalyses the oxidation of linoleic acid to (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate, but its second domain isomerizes it to (7S,8S,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate (cf. EC 5.4.4.6, 9,12-octadecadienoate 8-hydroperoxide 8S-isomerase) [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brodhun, F., Gobel, C., Hornung, E. and Feussner, I. Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a cytochrome P450. J. Biol. Chem. 284 (2009) 11792–11805. [DOI] [PMID: 19286665]
2.  Hamberg, M., Zhang, L.-Y., Brodowsky, I.D. and Oliw, E.H. Sequential oxygenation of linoleic acid in the fungus Gaeumannomyces graminis: stereochemistry of dioxygenase and hydroperoxide isomerase reactions. Arch. Biochem. Biophys. 309 (1994) 77–80. [DOI] [PMID: 8117115]
3.  Garscha, U. and Oliw, E. Pichia expression and mutagenesis of 7,8-linoleate diol synthase change the dioxygenase and hydroperoxide isomerase. Biochem. Biophys. Res. Commun. 373 (2008) 579–583. [DOI] [PMID: 18586008]
4.  Su, C. and Oliw, E.H. Purification and characterization of linoleate 8-dioxygenase from the fungus Gaeumannomyces graminis as a novel hemoprotein. J. Biol. Chem. 271 (1996) 14112–14118. [DOI] [PMID: 8662736]
[EC 1.13.11.60 created 2011]
 
 
EC 1.13.11.61     
Accepted name: linolenate 9R-lipoxygenase
Reaction: α-linolenate + O2 = (9R,10E,12Z,15Z)-9-hydroperoxyoctadeca-10,12,15-trienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
α-linolenate = (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
Other name(s): NspLOX; (9R)-LOX; linoleate 9R-dioxygenase
Systematic name: α-linolenate:oxygen (9R)-oxidoreductase
Comments: In cyanobacteria the enzyme is involved in oxylipin biosynthesis. The enzyme also converts linoleate to (9R,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jerneren, F., Hoffmann, I. and Oliw, E.H. Linoleate 9R-dioxygenase and allene oxide synthase activities of Aspergillus terreus. Arch. Biochem. Biophys. 495 (2010) 67–73. [DOI] [PMID: 20043865]
2.  Andreou, A.Z., Vanko, M., Bezakova, L. and Feussner, I. Properties of a mini 9R-lipoxygenase from Nostoc sp. PCC 7120 and its mutant forms. Phytochemistry 69 (2008) 1832–1837. [DOI] [PMID: 18439634]
3.  Lang, I., Gobel, C., Porzel, A., Heilmann, I. and Feussner, I. A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120. Biochem. J. 410 (2008) 347–357. [DOI] [PMID: 18031288]
[EC 1.13.11.61 created 2011]
 
 
EC 1.13.11.62     
Accepted name: linoleate 10R-lipoxygenase
Reaction: linoleate + O2 = (8E,10R,12Z)-10-hydroperoxy-8,12-octadecadienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
Other name(s): 10R-DOX; (10R)-dioxygenase; 10R-dioxygenase
Systematic name: linoleate:oxygen (10R)-oxidoreductase
Comments: The enzyme is involved in biosynthesis of oxylipins, which affect sporulation, development, and pathogenicity of Aspergillus spp.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Garscha, U. and Oliw, E.H. Leucine/valine residues direct oxygenation of linoleic acid by (10R)- and (8R)-dioxygenases: expression and site-directed mutagenesis of (10R)-dioxygenase with epoxyalcohol synthase activity. J. Biol. Chem. 284 (2009) 13755–13765. [DOI] [PMID: 19289462]
2.  Jerneren, F., Garscha, U., Hoffmann, I., Hamberg, M. and Oliw, E.H. Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase, and 8,11-hydroperoxide isomerase of Aspergillus clavatus. Biochim. Biophys. Acta 1801 (2010) 503–507. [DOI] [PMID: 20045744]
[EC 1.13.11.62 created 2011]
 
 
EC 1.13.11.77     
Accepted name: oleate 10S-lipoxygenase
Reaction: (1) oleate + O2 = (8E,10S)-10-hydroperoxyoctadeca-8-enoate
(2) linoleate + O2 = (8E,10S,12Z)-10-hydroperoxyoctadeca-8,12-dienoate
(3) α-linolenate + O2 = (8E,10S,12Z,15Z)-10-hydroperoxyoctadeca-8,12,15-trienoate
Other name(s): 10S-DOX; (10S)-dioxygenase; 10S-dioxygenase
Systematic name: oleate:oxygen (10S)-oxidoreductase
Comments: Binds Fe2+. The enzyme isolated from the bacterium Pseudomonas sp. 42A2 has similar activity with all the three Δ9 fatty acids. cf. EC 1.13.11.62, linoleate 10R-lipoxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Busquets, M., Deroncele, V., Vidal-Mas, J., Rodriguez, E., Guerrero, A. and Manresa, A. Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into (S)-(E)-10-hydroxy-8-octadecenoic acid. Antonie Van Leeuwenhoek 85 (2004) 129–139. [DOI] [PMID: 15028873]
[EC 1.13.11.77 created 2013]
 
 
EC 1.14.13.26      
Transferred entry: phosphatidylcholine 12-monooxygenase. Now classified as EC 1.14.18.4, phosphatidylcholine 12-monooxygenase.
[EC 1.14.13.26 created 1984, deleted 2015]
 
 
EC 1.14.13.205      
Transferred entry: long-chain fatty acid ω-monooxygenase. Now EC 1.14.14.80, long-chain fatty acid ω-monooxygenase
[EC 1.14.13.205 created 2015, deleted 2018]
 
 
EC 1.14.14.80     
Accepted name: long-chain fatty acid ω-monooxygenase
Reaction: a long-chain fatty acid + [reduced NADPH—hemoprotein reductase] + O2 = an ω-hydroxy-long-chain fatty acid + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): CYP704B1 (gene name); CYP52M1 (gene name); CYP4A (gene name); CYP86A (gene name)
Systematic name: long-chain fatty acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ω-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The plant enzyme CYP704B1, which is involved in the synthesis of sporopollenin, a complex polymer found at the outer layer of spores and pollen, acts on palmitate (18:0), stearate (18:0) and oleate (18:1). The plant enzyme CYP86A1 also acts on laurate (12:0). The enzyme from the yeast Starmerella bombicola (CYP52M1) acts on C16 to C20 saturated and unsaturated fatty acids and can also hydroxylate the (ω-1) position. The mammalian enzyme CYP4A acts on laurate (12:0), myristate (14:0), palmitate (16:0), oleate (18:1), and arachidonate (20:4).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Benveniste, I., Tijet, N., Adas, F., Philipps, G., Salaun, J.P. and Durst, F. CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid ω-hydroxylase. Biochem. Biophys. Res. Commun. 243 (1998) 688–693. [DOI] [PMID: 9500987]
2.  Hoch, U., Zhang, Z., Kroetz, D.L. and Ortiz de Montellano, P.R. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid ω-hydroxylases. Arch. Biochem. Biophys. 373 (2000) 63–71. [DOI] [PMID: 10620324]
3.  Dobritsa, A.A., Shrestha, J., Morant, M., Pinot, F., Matsuno, M., Swanson, R., Møller, B.L. and Preuss, D. CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol. 151 (2009) 574–589. [DOI] [PMID: 19700560]
4.  Huang, F.C., Peter, A. and Schwab, W. Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from Starmerella bombicola. Appl. Environ. Microbiol. 80 (2014) 766–776. [DOI] [PMID: 24242247]
[EC 1.14.14.80 created 2015 as EC 1.14.13.205, transferred 2018 to EC 1.14.14.80]
 
 
EC 1.14.18.4     
Accepted name: phosphatidylcholine 12-monooxygenase
Reaction: a 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + 2 ferrocytochrome b5 + O2 + 2 H+ = a 1-acyl-2-[(12R)-12-hydroxyoleoyl]-sn-glycero-3-phosphocholine + 2 ferricytochrome b5 + H2O
Glossary: ricinoleic acid = (9Z,12R)-12-hydroxyoctadec-9-enoic acid
Other name(s): ricinoleic acid synthase; oleate Δ12-hydroxylase; oleate Δ12-monooxygenase
Systematic name: 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine,ferrocytochrome-b5:oxygen oxidoreductase (12-hydroxylating)
Comments: The enzyme, characterized from the plant Ricinus communis (castor bean), is involved in production of the 12-hydroxylated fatty acid ricinoleate. The enzyme, which shares sequence similarity with fatty-acyl desaturases, requires a cytochrome b5 as the electron donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77950-95-9
References:
1.  Galliard, T. and Stumpf, P.K. Fat metabolism in higher plants. 30. Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J. Biol. Chem. 241 (1966) 5806–5812. [PMID: 4289003]
2.  Moreau, R.A. and Stumpf, P.K. Recent studies of the enzymic-synthesis of ricinoleic acid by developing castor beans. Plant Physiol. 67 (1981) 672–676. [PMID: 16661734]
3.  Smith, M.A., Jonsson, L., Stymne, S. and Stobart, K. Evidence for cytochrome b5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L.). Biochem. J. 287 (1992) 141–144. [PMID: 1417766]
4.  Lin, J.T., McKeon, T.A., Goodrich-Tanrikulu, M. and Stafford, A.E. Characterization of oleoyl-12-hydroxylase in castor microsomes using the putative substrate, 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine. Lipids 31 (1996) 571–577. [DOI] [PMID: 8784737]
5.  Broun, P. and Somerville, C. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol. 113 (1997) 933–942. [PMID: 9085577]
[EC 1.14.18.4 created 1984 as EC 1.14.13.26, transferred 2015 to EC 1.14.18.4]
 
 
EC 1.14.19.3     
Accepted name: acyl-CoA 6-desaturase
Reaction: (1) linoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = γ-linolenoyl-CoA + 2 ferricytochrome b5 + 2 H2O
(2) α-linolenoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = stearidonoyl-CoA + 2 ferricytochrome b5 + 2 H2O
Other name(s): Δ6-desaturase; Δ6-fatty acyl-CoA desaturase; Δ6-acyl CoA desaturase; fatty acid Δ6-desaturase; fatty acid 6-desaturase; linoleate desaturase; linoleic desaturase; linoleic acid desaturase; linoleoyl CoA desaturase; linoleoyl-coenzyme A desaturase; long-chain fatty acid Δ6-desaturase; linoleoyl-CoA,hydrogen-donor:oxygen oxidoreductase; linoleoyl-CoA desaturase; FADS2 (gene name)
Systematic name: acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (6,7 cis-dehydrogenating)
Comments: An iron protein. The enzyme introduces a cis double bond at carbon 6 of acyl-CoAs. It is a front-end desaturase, introducing the new double bond between a pre-existing double bond and the carboxyl-end of the fatty acid. The human enzyme has a broad substrate range. It also acts on palmitoyl-CoA, generating sapienoyl-CoA [4], and on (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl-CoA, converting it to (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl-CoA as part of a pathway that produces docosahexaenoate [3]. The enzyme contains a cytochrome b5 domain that is assumed to act in vivo as the electron donor to the active site of the desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9082-66-0
References:
1.  Okayasu, T., Nagao, M., Ishibashi, T. and Imai, Y. Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes. Arch. Biochem. Biophys. 206 (1981) 21–28. [DOI] [PMID: 7212717]
2.  Cho, H.P., Nakamura, M.T. and Clarke, S.D. Cloning, expression, and nutritional regulation of the mammalian Δ-6 desaturase. J. Biol. Chem. 274 (1999) 471–477. [DOI] [PMID: 9867867]
3.  Sprecher, H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta 1486 (2000) 219–231. [DOI] [PMID: 10903473]
4.  Ge, L., Gordon, J.S., Hsuan, C., Stenn, K. and Prouty, S.M. Identification of the Δ-6 desaturase of human sebaceous glands: expression and enzyme activity. J. Invest. Dermatol. 120 (2003) 707–714. [DOI] [PMID: 12713571]
5.  Domergue, F., Abbadi, A., Zähringer, U., Moreau, H. and Heinz, E. In vivo characterization of the first acyl-CoA Δ6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem. J. 389 (2005) 483–490. [DOI] [PMID: 15769252]
[EC 1.14.19.3 created 1986 as EC 1.14.99.25, transferred 2000 to EC 1.14.19.3, modified 2015]
 
 
EC 1.14.19.6     
Accepted name: acyl-CoA (9+3)-desaturase
Reaction: (1) oleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
(2) palmitoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12Z)-hexadeca-9,12-dienoyl-CoA + 2 ferricytochrome b5 + 2 H2O
Glossary: oleoyl-CoA = cis-octadec-9-enoyl-CoA = (9Z)-octadec-9-enoyl-CoA = 18:1 cis-9 = 18:1(n-9)
linoleoyl-CoA = cis,cis-octadeca-9,12-dienoyl-CoA = (9Z,12Z)-octadeca-9,12-dienoyl-CoA = 18:2(n-6)
palmitoleoyl-CoA = (9Z)-hexadec-9-enoyl-CoA
Other name(s): oleoyl-CoA 12-desaturase; Δ12 fatty acid desaturase; Δ126)-desaturase; oleoyl-CoA Δ12 desaturase; Δ12 desaturase; Δ12-desaturase; Δ12-fatty-acid desaturase; acyl-CoA,hydrogen donor:oxygen Δ12-oxidoreductase
Systematic name: acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This microsomal enzyme introduces a cis double bond at position 12 of fatty-acyl-CoAs that contain a cis double bond at position 9. When acting on 19:1Δ10 fatty acyl-CoA the enzyme from the pathogenic protozoan Trypanosoma brucei introduces the new double bond at position 13, indicating that the new double bond is introduced three carbons from the existing cis double bond, towards the methyl-end of the fatty acid. Requires cytochrome b5 as the electron donor [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Borgeson, C.E., de Renobales, M. and Blomquist, G.J. Characterization of the Δ12 desaturase in the American cockroach, Periplaneta americana: the nature of the substrate. Biochim. Biophys. Acta 1047 (1990) 135–140. [DOI] [PMID: 2248971]
2.  Lomascolo, A., Dubreucq, E. and Galzy, P. Study of the Δ12-desaturase system of Lipomyces starkeyi. Lipids 31 (1996) 253–259. [DOI] [PMID: 8900454]
3.  Tocher, D.R., Leaver, M.J. and Hodgson, P.A. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog. Lipid Res. 37 (1998) 73–117. [DOI] [PMID: 9829122]
4.  Petrini, G.A., Altabe, S.G. and Uttaro, A.D. Trypanosoma brucei oleate desaturase may use a cytochrome b5-like domain in another desaturase as an electron donor. Eur. J. Biochem. 271 (2004) 1079–1086. [PMID: 15009186]
[EC 1.14.19.6 created 2008, modified 2015]
 
 
EC 1.14.19.12     
Accepted name: acyl-lipid ω-(9-4) desaturase
Reaction: (1) linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = pinolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) α-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = coniferonoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: taxoleate = (5Z,9Z)-octadeca-5,9-dienoate
pinolenoate = (5Z,9Z,12Z)-octadeca-5,9,12-trienoate
coniferonate = (5Z,9Z,12Z,15Z)-octadeca-5,9,12,15-tetraenoate
Other name(s): acyl-lipid ω-13 desaturase; acyl-lipid 7-desaturase (ambiguous)
Systematic name: acyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase [ω(9-4),ω(9-5) cis-dehydrogenating]
Comments: The enzyme, characterized from the green alga Chlamydomonas reinhardtii, is a front-end desaturase that introduces a cis double bond in ω9 unsaturated C18 or C20 fatty acids incorporated into lipids, at a position 4 carbon atoms from the existing ω9 bond, towards the carboxy end of the fatty acid (at the ω13 position). When acting on 20:2Δ(11,14) and 20:3Δ(11,14,17) substrates it introduces the new double bond between carbons 7 and 8. The enzyme contains a cytochrome b5 domain that acts as the direct electron donor for the active site of the desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kajikawa, M., Yamato, K.T., Kohzu, Y., Shoji, S., Matsui, K., Tanaka, Y., Sakai, Y. and Fukuzawa, H. A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by ω13 desaturation in methylotrophic yeast and tobacco. Plant Cell Physiol. 47 (2006) 64–73. [DOI] [PMID: 16267098]
[EC 1.14.19.12 created 2015]
 
 
EC 1.14.19.16     
Accepted name: linoleoyl-lipid Δ12 conjugase (11E,13Z-forming)
Reaction: a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,11E,13Z)-octadeca-9,11,13-trienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: punicate = (9Z,11E,13Z)-octadeca-9,11,13-trienoate
linoleate = (9Z,12Z)-octadeca-9,12-dienoate
Other name(s): Fac (gene name)
Systematic name: linoleoyl-lipid,ferrocytochrome-b5:oxygen 11,14 allylic oxidase (11E,13Z-forming)
Comments: The enzyme, characterized from the plants Punica granatum (pomegranate) and Trichosanthes kirilowii (Mongolian snake-gourd), converts a single cis double bond at position 12 of linoleate incorporated into phosphatidylcholine into conjugated 11-trans and 13-cis double bonds. cf. EC 1.14.19.33, Δ12 acyl-lipid conjugase (11E,13E-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hornung, E., Pernstich, C. and Feussner, I. Formation of conjugated Δ11Δ13-double bonds by Δ12-linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds. Eur. J. Biochem. 269 (2002) 4852–4859. [DOI] [PMID: 12354116]
2.  Iwabuchi, M., Kohno-Murase, J. and Imamura, J. Δ12-oleate desaturase-related enzymes associated with formation of conjugated trans11, cis13 double bonds. J. Biol. Chem. 278 (2003) 4603–4610. [DOI] [PMID: 12464604]
[EC 1.14.19.16 created 2015]
 
 
EC 1.14.19.22     
Accepted name: acyl-lipid ω-6 desaturase (cytochrome b5)
Reaction: an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a linoleoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Other name(s): oleate desaturase (ambiguous); linoleate synthase (ambiguous); oleoyl-CoA desaturase (incorrect); oleoylphosphatidylcholine desaturase (ambiguous); phosphatidylcholine desaturase (ambiguous); n-6 desaturase (ambiguous); FAD2 (gene name)
Systematic name: 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine,ferrocytochrome-b5:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This microsomal enzyme introduces a cis double bond in fatty acids attached to lipid molecules at a location 6 carbons away from the methyl end of the fatty acid. The distance from the carboxylic acid end of the molecule does not affect the location of the new double bond. The most common substrates are oleoyl groups attached to either the sn-1 or sn-2 position of the glycerol backbone in phosphatidylcholine. cf. EC 1.14.19.23, acyl-lipid ω-6 desaturase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72536-70-0
References:
1.  Pugh, E.L. and Kates, M. Characterization of a membrane-bound phospholipid desaturase system of Candida lipolytica. Biochim. Biophys. Acta 380 (1975) 442–453. [DOI] [PMID: 166662]
2.  Slack, C.R., Roughan, P.G. and Browse, J. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed. Biochem. J. 179 (1979) 649–656. [PMID: 475773]
3.  Stymne, S. and Appelqvist, L.-A. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds. Eur. J. Biochem. 90 (1978) 223–229. [DOI] [PMID: 710426]
4.  Smith, M.A., Cross, A.R., Jones, O.T., Griffiths, W.T., Stymne, S. and Stobart, K. Electron-transport components of the 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine Δ12-desaturase (Δ12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochem. J. 272 (1990) 23–29. [PMID: 2264826]
5.  Kearns, E.V., Hugly, S. and Somerville, C.R. The role of cytochrome b5 in Δ12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Arch. Biochem. Biophys. 284 (1991) 431–436. [DOI] [PMID: 1989527]
6.  Miquel, M. and Browse, J. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J. Biol. Chem. 267 (1992) 1502–1509. [PMID: 1730697]
[EC 1.14.19.22 created 1984 as EC 1.3.1.35, transferred 2015 to EC 1.14.19.22]
 
 
EC 1.14.19.23     
Accepted name: acyl-lipid (n+3)-(Z)-desaturase (ferredoxin)
Reaction: an oleoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a linoleoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): acyl-lipid ω6-desaturase (ferredoxin); oleate desaturase (ambiguous); linoleate synthase (ambiguous); oleoyl-CoA desaturase (ambiguous); oleoylphosphatidylcholine desaturase (ambiguous); phosphatidylcholine desaturase (ambiguous); FAD6 (gene name)
Systematic name: oleoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This plastidial enzyme is able to insert a cis double bond in monounsaturated fatty acids incorporated into glycerolipids. The enzyme introduces the new bond at a position 3 carbons away from the existing double bond, towards the methyl end of the fatty acid. The native substrates are oleoyl (18:1 Δ9) and (Z)-hexadec-7-enoyl (16:1 Δ7) groups attached to either position of the glycerol backbone in glycerolipids, resulting in the introduction of the second double bond at positions 12 and 10, respectively This prompted the suggestion that this is an ω6 desaturase. However, when acting on palmitoleoyl groups(16:1 Δ9), the enzyme introduces the second double bond at position 12 (ω4), indicating it is an (n+3) desaturase [3]. cf. EC 1.14.19.34, acyl-lipid (9+3)-(E)-desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schmidt, H. and Heinz, E. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts. Proc. Natl. Acad. Sci. USA 87 (1990) 9477–9480. [DOI] [PMID: 11607123]
2.  Schmidt, H. and Heinz, E. Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol. 94 (1990) 214–220. [PMID: 16667689]
3.  Hitz, W.D., Carlson, T.J., Booth, J.R., Jr., Kinney, A.J., Stecca, K.L. and Yadav, N.S. Cloning of a higher-plant plastid ω-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol. 105 (1994) 635–641. [PMID: 8066133]
4.  Falcone, D.L., Gibson, S., Lemieux, B. and Somerville, C. Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast ω 6 desaturase activity. Plant Physiol. 106 (1994) 1453–1459. [PMID: 7846158]
5.  Schmidt, H., Dresselhaus, T., Buck, F. and Heinz, E. Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol. Biol. 26 (1994) 631–642. [PMID: 7948918]
[EC 1.14.19.23 created 2015]
 
 
EC 1.14.19.33     
Accepted name: Δ12 acyl-lipid conjugase (11E,13E-forming)
Reaction: (1) a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-eleostearoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a γ-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-parinaroyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: α-eleostearate = (9Z,11E,13E)-octadeca-9,11,13-trienoate
α-parinarate = (9Z,11E,13E,15Z)-octadeca-9,11,13,15-tetraenoate
γ-linolenic acid = (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid
linoleic acid = (9Z,12Z)-octadeca-9,12-dienoic acid
Other name(s): fatty acid Δ12-conjugase (ambiguous); FADX (gene name)
Systematic name: Δ12 acyl-lipid,ferrocytochrome-b5:oxygen 11,14 allylic oxidase (11E,13E-forming)
Comments: The enzyme, characterized from the plants Impatiens balsamina, Momordica charantia (bitter gourd) and Vernicia fordii (tung tree), converts a single cis double bond at carbon 12 to two conjugated trans bonds at positions 11 and 13. The enzyme from Vernicia fordii can also act as a 12(E) desaturase when acting on the monounsaturated fatty acids oleate and palmitoleate. cf. EC 1.14.19.16, linoleoyl-lipid Δ12 conjugase (11E,13Z-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cahoon, E.B., Carlson, T.J., Ripp, K.G., Schweiger, B.J., Cook, G.A., Hall, S.E. and Kinney, A.J. Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc. Natl. Acad. Sci. USA 96 (1999) 12935–12940. [DOI] [PMID: 10536026]
2.  Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol. 130 (2002) 2027–2038. [DOI] [PMID: 12481086]
[EC 1.14.19.33 created 2015]
 
 
EC 1.14.19.34     
Accepted name: acyl-lipid (9+3)-(E)-desaturase
Reaction: (1) an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-octadeca-9,12-dienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a palmitoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-hexadeca-9,12-dienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Other name(s): acyl-lipid 12-(E)-desaturase; DsFAD2-1; FADX
Systematic name: Δ9 acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase (12,13 trans-dehydrogenating)
Comments: The enzymes from the plants Dimorphotheca sinuata (African daisy) and Vernicia fordii (tung oil tree) insert a trans double bond in position C-12 of oleate and palmitoleate incorporated into glycerolipids. The enzyme introduces the new double bond at a position three carbons away from an existing double bond at position 9, towards the methyl end of the fatty acid. The enzyme from tung oil tree also possesses the activity of EC 1.14.19.33, Δ12 acyl-lipid conjugase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol. 130 (2002) 2027–2038. [DOI] [PMID: 12481086]
2.  Cahoon, E.B. and Kinney, A.J. Dimorphecolic acid is synthesized by the coordinate activities of two divergent Δ12-oleic acid desaturases. J. Biol. Chem. 279 (2004) 12495–12502. [DOI] [PMID: 14718523]
[EC 1.14.19.34 created 2015]
 
 
EC 1.14.19.39     
Accepted name: acyl-lipid Δ12-acetylenase
Reaction: linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = crepenynyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: crepenynate = (9Z)-octadec-9-en-12-ynoate
Systematic name: Δ12 acyl-lipid,ferrocytochrome-b5:oxygen oxidoreductase (12,13-dehydrogenating)
Comments: The enzyme, characterized from the plant Crepis alpina, converts the double bond at position 12 of linoleate into a triple bond. The product is the main fatty acid found in triacylglycerols in the seed oil of Crepis alpina.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Banas, A., Bafor, M., Wiberg, E., Lenman, M., Staahl, U. and Stymne, S. Biosynthesis of an acetylenic fatty acid in microsomal preparations from developing seeds Crepis alpina. Physiol. Biochem. Mol. Biol. Plant. [Proc. Int. Symp. Plant Lipids] 12th (1997) 57–59.
2.  Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P.O., Sjodahl, S., Green, A. and Stymne, S. Identification of non-heme di-iron proteins that catalyze triple bond and epoxy group formation. Science 280 (1998) 915–918. [DOI] [PMID: 9572738]
3.  Nam, J.W. and Kappock, T.J. Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid. J. Exp. Bot. 58 (2007) 1421–1432. [DOI] [PMID: 17329262]
[EC 1.14.19.39 created 2000 as EC 1.14.99.33, transferred 2015 to EC 1.14.19.39]
 
 
EC 1.14.19.43     
Accepted name: palmitoyl-[glycerolipid] 3-(E)-desaturase
Reaction: a 1-acyl-2-palmitoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-acyl-2-[(3E)-hexadec-3-enoyl]-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): FAD4
Systematic name: 1-acyl-2-palmitoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (3,4-trans -dehydrogenating)
Comments: The enzyme introduces an unusual trans double bond at carbon 3 of a palmitoyl group attached to the sn-2 position of glycerolipids. The enzyme from the plant Arabidopsis thaliana is specific for palmitate in phosphatidylglycerol. The enzyme from tobacco can also accept oleate and α-linolenate if present at the sn-2 position of phosphatidylglycerol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fritz, M., Lokstein, H., Hackenberg, D., Welti, R., Roth, M., Zähringer, U., Fulda, M., Hellmeyer, W., Ott, C., Wolter, F.P. and Heinz, E. Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J. Biol. Chem. 282 (2007) 4613–4625. [DOI] [PMID: 17158889]
2.  Gao, J., Ajjawi, I., Manoli, A., Sawin, A., Xu, C., Froehlich, J.E., Last, R.L. and Benning, C. FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J. 60 (2009) 832–839. [DOI] [PMID: 19682287]
[EC 1.14.19.43 created 2015]
 
 
EC 1.14.19.44     
Accepted name: acyl-CoA (8-3)-desaturase
Reaction: (1) (8Z,11Z,14Z)-icosa-8,11,14-trienoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = arachidonoyl-CoA + 2 ferricytochrome b5 + 2 H2O
(2) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA + 2 ferricytochrome b5 + 2 H2O
Other name(s): FADS1 (gene name); acyl-CoA 5-desaturase (methylene-interrupted)
Systematic name: Δ8-acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (5,6-cis-dehydrogenating)
Comments: The enzyme introduces a cis double bond at carbon 5 of acyl-CoAs that contain a double bond at position 8. The enzymes from algae, mosses, mammals and the protozoan Leishmania major catalyse the desaturation of dihomo-γ-linoleate [(8Z,11Z,14Z)-icosa-8,11,14-trienoate] and (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate to generate arachidonate and (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate, respectively. The enzyme contains a cytochrome b5 domain that acts as the direct electron donor to the desaturase active site and does not require an external cytochrome. cf. EC 1.14.19.37, acyl-CoA 5-desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cho, H.P., Nakamura, M. and Clarke, S.D. Cloning, expression, and fatty acid regulation of the human Δ5 desaturase. J. Biol. Chem. 274 (1999) 37335–37339. [DOI] [PMID: 10601301]
2.  Leonard, A.E., Kelder, B., Bobik, E.G., Chuang, L.T., Parker-Barnes, J.M., Thurmond, J.M., Kroeger, P.E., Kopchick, J.J., Huang, Y.S. and Mukerji, P. cDNA cloning and characterization of human Δ5-desaturase involved in the biosynthesis of arachidonic acid. Biochem. J. 347 Pt 3 (2000) 719–724. [PMID: 10769175]
3.  Tripodi, K.E., Buttigliero, L.V., Altabe, S.G. and Uttaro, A.D. Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J. 273 (2006) 271–280. [DOI] [PMID: 16403015]
4.  Tavares, S., Grotkjær, T., Obsen, T., Haslam, R.P., Napier, J.A. and Gunnarsson, N. Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. Appl. Environ. Microbiol. 77 (2011) 1854–1861. [DOI] [PMID: 21193673]
[EC 1.14.19.44 created 2015]
 
 
EC 1.14.99.33      
Transferred entry: Δ12-fatty acid dehydrogenase. Now EC 1.14.19.39, acyl-lipid Δ12-acetylenase
[EC 1.14.99.33 created 2000, deleted 2015]
 
 
EC 2.3.1.42     
Accepted name: glycerone-phosphate O-acyltransferase
Reaction: acyl-CoA + glycerone phosphate = CoA + acylglycerone phosphate
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): dihydroxyacetone phosphate acyltransferase (ambiguous)
Systematic name: acyl-CoA:glycerone-phosphate O-acyltransferase
Comments: A membrane protein. Uses CoA derivatives of palmitate, stearate and oleate, with highest activity on palmitoyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37257-19-5
References:
1.  Ballas, L.M. and Bell, R.M. Topography of glycerolipid synthetic enzymes. Synthesis of phosphatidylserine, phosphatidylinositol and glycerolipid intermediates occurs on the cytoplasmic surface of rat liver microsomal vesicles. Biochim. Biophys. Acta 665 (1981) 586–595. [DOI] [PMID: 6271231]
2.  Declercq, P.E., Haagsman, H.P., Van Veldhoven, P., Debeer, L.J., Van Golde, L.M.G. and Mannaerts, G.P. Rat liver dihydroxyacetone-phosphate acyltransferases and their contribution to glycerolipid synthesis. J. Biol. Chem. 259 (1984) 9064–9075. [PMID: 6746639]
3.  Hajra, A.K. Biosynthesis of acyl dihydroxyacetone phosphate in guinea pig liver mitochondria. J. Biol. Chem. 243 (1968) 3458–3465. [PMID: 5656381]
[EC 2.3.1.42 created 1972]
 
 
EC 2.3.1.179     
Accepted name: β-ketoacyl-[acyl-carrier-protein] synthase II
Reaction: a (Z)-hexadec-9-enoyl-[acyl-carrier protein] + a malonyl-[acyl-carrier protein] = a (Z)-3-oxooctadec-11-enoyl-[acyl-carrier protein] + CO2 + an [acyl-carrier protein]
Glossary: palmitoleoyl-[acyl-carrier protein] = (Z)-hexadec-9-enoyl-[acyl-carrier protein]
cis-vaccenoyl-[acyl-carrier protein] = (Z)-octadec-11-enoyl-[acyl-carrier protein]
Other name(s): KASII; KAS II; FabF; 3-oxoacyl-acyl carrier protein synthase II; β-ketoacyl-ACP synthase II
Systematic name: (Z)-hexadec-9-enoyl-[acyl-carrier protein]:malonyl-[acyl-carrier protein] C-acyltransferase (decarboxylating)
Comments: Involved in the dissociated (or type II) fatty acid biosynthesis system that occurs in plants and bacteria. While the substrate specificity of this enzyme is very similar to that of EC 2.3.1.41, β-ketoacyl-[acyl-carrier-protein] synthase I, it differs in that palmitoleoyl-[acyl-carrier protein] is not a good substrate of EC 2.3.1.41 but is an excellent substrate of this enzyme [1,2]. The fatty-acid composition of Escherichia coli changes as a function of growth temperature, with the proportion of unsaturated fatty acids increasing with lower growth temperature. This enzyme controls the temperature-dependent regulation of fatty-acid composition, with mutants lacking this acivity being deficient in the elongation of palmitoleate to cis-vaccenate at low temperatures [3,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 1048648-42-5
References:
1.  D'Agnolo, G., Rosenfeld, I.S. and Vagelos, P.R. Multiple forms of β-ketoacyl-acyl carrier protein synthetase in Escherichia coli. J. Biol. Chem. 250 (1975) 5289–5294. [PMID: 237914]
2.  Garwin, J.L., Klages, A.L. and Cronan, J.E., Jr.. Structural, enzymatic, and genetic studies of β-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J. Biol. Chem. 255 (1980) 11949–11956. [PMID: 7002930]
3.  Price, A.C., Rock, C.O. and White, S.W. The 1.3-Angstrom-resolution crystal structure of β-ketoacyl-acyl carrier protein synthase II from Streptococcus pneumoniae. J. Bacteriol. 185 (2003) 4136–4143. [DOI] [PMID: 12837788]
4.  Garwin, J.L., Klages, A.L. and Cronan, J.E., Jr. β-Ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J. Biol. Chem. 255 (1980) 3263–3265. [PMID: 6988423]
5.  Magnuson, K., Carey, M.R. and Cronan, J.E., Jr. The putative fabJ gene of Escherichia coli fatty acid synthesis is the fabF gene. J. Bacteriol. 177 (1995) 3593–3595. [DOI] [PMID: 7768872]
6.  Cronan, J.E., Jr. and Rock, C.O. Biosynthesis of membrane lipids. In: Neidhardt, F.C. (Ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, vol. 1, ASM Press, Washington, DC, 1996, pp. 612–636.
[EC 2.3.1.179 created 2006, modified 2020]
 
 
EC 2.3.1.296     
Accepted name: ω-hydroxyceramide transacylase
Reaction: a linoleate-containing triacyl-sn-glycerol + an ultra-long-chain ω-hydroxyceramide = a diacyl-sn-glycerol + a linoleate-esterified acylceramide
Glossary: an ultra-long-chain fatty acid = ULCFA = a fatty acid with aliphatic chain of 28 or more carbons
an ultra-long-chain ω-hydroxyceramide = a ceramide that contains an ultra-long-chain ω-hydroxyfatty acid moiety (C28-C36)
acylceramide = ω-O-acylceramide = a ceramide that contains an ultra-long-chain ω-hydroxyfatty acid moiety (C28-C36) that is further extended by ω-esterification with linoleic acid.
Other name(s): PNPLA1 (gene name)
Systematic name: triacyl-sn-glycerol:ultra-long-chain ω-hydroxyceramide ω-O-linoleoyltransferase
Comments: The enzyme participates in the production of acylceramides in the stratum corneum, the outermost layer of the epidermis. Acylceramides are crucial components of the skin permeability barrier.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ohno, Y., Kamiyama, N., Nakamichi, S. and Kihara, A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat. Commun. 8:14610 (2017). [PMID: 28248318]
[EC 2.3.1.296 created 2019]
 
 
EC 3.1.1.63     
Accepted name: 11-cis-retinyl-palmitate hydrolase
Reaction: 11-cis-retinyl palmitate + H2O = 11-cis-retinol + palmitate
For diagram of biosynthesis of retinal and derivatives, click here
Other name(s): 11-cis-retinol palmitate esterase; RPH
Systematic name: 11-cis-retinyl-palmitate acylhydrolase
Comments: Activated by bile salts.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 106389-23-5
References:
1.  Blaner, W.S., Das, S.R., Gouras, P. and Flood, M.T. Hydrolysis of 11-cis- and all-trans-retinyl palmitate by homogenates of human retinal epithelial cells. J. Biol. Chem. 262 (1987) 53–58. [PMID: 3793734]
2.  Blaner, W.S., Prystowsky, J.H., Smith, J.E. and Goodman, D.S. Rat liver retinyl palmitate hydrolase activity. Relationship to cholesteryl oleate and triolein hydrolase activities. Biochim. Biophys. Acta 794 (1984) 419–427. [DOI] [PMID: 6743673]
[EC 3.1.1.63 created 1989]
 
 
EC 3.1.1.98     
Accepted name: [Wnt protein] O-palmitoleoyl-L-serine hydrolase
Reaction: [Wnt]-O-(9Z)-hexadec-9-enoyl-L-serine + H2O = [Wnt]-L-serine + (9Z)-hexadec-9-enoate
Glossary: (9Z)-hexadec-9-enoate = palmitoleoate
Other name(s): Notum
Systematic name: [Wnt]-O-(9Z)-hexadec-9-enoyl-L-serine acylhydrolase
Comments: The enzyme removes the palmitoleate modification that is introduced to specific L-serine residues in Wnt proteins by EC 2.3.1.250, [Wnt protein]-O-palmitoleoyl transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kakugawa, S., Langton, P.F., Zebisch, M., Howell, S.A., Chang, T.H., Liu, Y., Feizi, T., Bineva, G., O'Reilly, N., Snijders, A.P., Jones, E.Y. and Vincent, J.P. Notum deacylates Wnt proteins to suppress signalling activity. Nature (2015) . [DOI] [PMID: 25731175]
[EC 3.1.1.98 created 2015]
 
 
EC 3.1.2.14     
Accepted name: oleoyl-[acyl-carrier-protein] hydrolase
Reaction: an oleoyl-[acyl-carrier protein] + H2O = an [acyl-carrier protein] + oleate
Other name(s): acyl-[acyl-carrier-protein] hydrolase; acyl-ACP-hydrolase; acyl-acyl carrier protein hydrolase; oleoyl-ACP thioesterase; oleoyl-acyl carrier protein thioesterase; oleoyl-[acyl-carrier-protein] hydrolase
Systematic name: oleoyl-[acyl-carrier protein] hydrolase
Comments: Acts on acyl-carrier-protein thioesters of fatty acids from C12 to C18, but the derivative of oleic acid is hydrolysed much more rapidly than any other compound tested.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 68009-83-6
References:
1.  Ohlrogge, J.B., Shine, W.E. and Stumpf, P.K. Fat metabolism in higher plants. Characterization of plant acyl-ACP and acyl-CoA hydrolases. Arch. Biochem. Biophys. 189 (1978) 382–391. [DOI] [PMID: 30409]
2.  Shine, W.E., Mancha, M. and Stumpf, P.K. Fat metabolism in higher plants. The function of acyl thioesterases in the metabolism of acyl-coenzymes A and acyl-acyl carrier proteins. Arch. Biochem. Biophys. 172 (1976) 110–116. [DOI] [PMID: 3134]
[EC 3.1.2.14 created 1984]
 
 
EC 4.2.1.53     
Accepted name: oleate hydratase
Reaction: (R)-10-hydroxystearate = oleate + H2O
Other name(s): (R)-10-hydroxystearate 10-hydro-lyase
Systematic name: (R)-10-hydroxystearate 10-hydro-lyase (oleate-forming)
Comments: Acts on a number of 10-hydroxy acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-51-2
References:
1.  Davis, E.N., Wallen, L.L., Goodwin, J.C., Rohwedder, W.K. and Rhodes, R.A. Microbial hydration of cis-9-alkenoic acids. Lipids 4 (1969) 356–362. [DOI] [PMID: 5823715]
2.  Gotouda, H., Takatori, T., Terazawa, K., Nagao, M. and Tarao, H. The mechanism of experimental adipocere formation: hydration and dehydrogenation in microbial synthesis of hydroxy and oxo fatty acids. Forensic Sci. Int. 37 (1988) 249–257. [DOI] [PMID: 3410394]
3.  Niehaus, W.G., Jr., Kisic, A., Torkelson, A., Bednarczyk, D.J. and Schroepfer, G.J., Jr. , Stereospecific hydration of the Δ9 double bond of oleic acid. J. Biol. Chem. 245 (1970) 3790–3797. [PMID: 5492948]
[EC 4.2.1.53 created 1972]
 
 
EC 4.2.1.92     
Accepted name: hydroperoxide dehydratase
Reaction: (9Z,11E,15Z)-(13S)-hydroperoxyoctadeca-9,11,15-trienoate = (9Z,15Z)-(13S)-12,13-epoxyoctadeca-9,11,15-trienoate + H2O
Glossary: 13-hydroperoxylinolenoate = (9Z,11E,15Z)-(13S)-hydroperoxyoctadeca-9,11,15-trienoate
Other name(s): hydroperoxide isomerase; linoleate hydroperoxide isomerase; linoleic acid hydroperoxide isomerase; HPI; (9Z,11E,14Z)-(13S)-hydroperoxyoctadeca-9,11,14-trienoate 12,13-hydro-lyase; (9Z,11E,14Z)-(13S)-hydroperoxyoctadeca-9,11,14-trienoate 12,13-hydro-lyase [(9Z)-(13S)-12,13-epoxyoctadeca-9,11-dienoate-forming]; allene oxide synthase; AOS
Systematic name: (9Z,11E,15Z)-(13S)-hydroperoxyoctadeca-9,11,15-trienoate 12,13-hydro-lyase [(9Z,15Z)-(13S)-12,13-epoxyoctadeca-9,11,15-trienoate-forming]
Comments: Acts on a number of unsaturated fatty-acid hydroperoxides, forming the corresponding allene oxides. The product of the above reaction is unstable and is acted upon by EC 5.3.99.6, allene-oxide cyclase, to form the cyclopentenone derivative (15Z)-12-oxophyto-10,15-dienoate (OPDA), which is the first cyclic and biologically active metabolite in the jasmonate biosynthesis pathway [3]. The enzyme from many plants belongs to the CYP-74 family of P-450 monooxygenases [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Esselman, W.J. and Clagett, C.O. Products of linoleic hydroperoxide-decomposing enzyme of alfalfa seed. J. Lipid Res. 15 (1974) 173–178. [PMID: 4208994]
2.  Hamberg, M. Mechanism of corn hydroperoxide isomerase - detection of 12,13(S)-oxido-9(Z),11-octadecadienoic acid. Biochim. Biophys. Acta 920 (1987) 76–84.
3.  Hamberg, M. Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: identification of an allene oxide cyclase. Biochem. Biophys. Res. Commun. 156 (1988) 543–550. [DOI] [PMID: 3178850]
4.  Laudert, D., Pfannschmidt, U., Lottspeich, F., Holländer-Czytko, H. and Weiler, E.W. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol. Biol. 31 (1996) 323–335. [PMID: 8756596]
[EC 4.2.1.92 created 1992, modified 2008]
 
 
EC 5.2.1.5     
Accepted name: linoleate isomerase
Reaction: 9-cis,12-cis-octadecadienoate = 9-cis,11-trans-octadecadienoate
Other name(s): linoleic acid isomerase
Systematic name: linoleate Δ12-cis11-trans-isomerase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 37318-41-5
References:
1.  Kepler, C.R. and Tove, S.B. Biohydrogenation of unsaturated fatty acids. III. Purification and properties of linoleate Δ12-cis, Δ11-trans-isomerase from Butyrivibrio fibrosolvens. J. Biol. Chem. 242 (1967) 5686–5692. [PMID: 5633396]
[EC 5.2.1.5 created 1972]
 
 
EC 5.3.3.21     
Accepted name: Δ3,52,4-dienoyl-CoA isomerase
Reaction: a (3E,5Z)-alka-3,5-dienoyl-CoA = a (2E,4E)-alka-2,4-dienoyl-CoA
Other name(s): 3,5-tetradecadienoyl-CoA isomerase; DCI1 (gene name)
Systematic name: (3E,5Z)-alka-3,5-dienoyl-CoA Δ3,52,4 isomerase
Comments: The enzyme participates in an alternative degradation route of fatty acids with cis-double bonds on odd-number carbons such as oleate and linoleate. The main physiological substrate is (3E,5Z)-tetradeca-3,5-dienoyl-CoA, but other (3E,5Z)-dienoyl-CoAs with varying carbon chain lengths are also substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Filppula, S.A., Yagi, A.I., Kilpelainen, S.H., Novikov, D., FitzPatrick, D.R., Vihinen, M., Valle, D. and Hiltunen, J.K. Δ3,52,4-dienoyl-CoA isomerase from rat liver. Molecular characterization. J. Biol. Chem. 273 (1998) 349–355. [DOI] [PMID: 9417087]
2.  Modis, Y., Filppula, S.A., Novikov, D.K., Norledge, B., Hiltunen, J.K. and Wierenga, R.K. The crystal structure of dienoyl-CoA isomerase at 1.5 Å resolution reveals the importance of aspartate and glutamate sidechains for catalysis. Structure 6 (1998) 957–970. [DOI] [PMID: 9739087]
3.  Geisbrecht, B.V., Schulz, K., Nau, K., Geraghty, M.T., Schulz, H., Erdmann, R. and Gould, S.J. Preliminary characterization of Yor180Cp: identification of a novel peroxisomal protein of saccharomyces cerevisiae involved in fatty acid metabolism. Biochem. Biophys. Res. Commun. 260 (1999) 28–34. [DOI] [PMID: 10381339]
4.  Gurvitz, A., Mursula, A.M., Yagi, A.I., Hartig, A., Ruis, H., Rottensteiner, H. and Hiltunen, J.K. Alternatives to the isomerase-dependent pathway for the β-oxidation of oleic acid are dispensable in Saccharomyces cerevisiae. Identification of YOR180c/DCI1 encoding peroxisomal Δ(3,5)-Δ(2,4)-dienoyl-CoA isomerase. J. Biol. Chem. 274 (1999) 24514–24521. [DOI] [PMID: 10455114]
5.  Zhang, D., Liang, X., He, X.Y., Alipui, O.D., Yang, S.Y. and Schulz, H. Δ3,52,4-dienoyl-CoA isomerase is a multifunctional isomerase. A structural and mechanistic study. J. Biol. Chem. 276 (2001) 13622–13627. [DOI] [PMID: 11278886]
6.  Goepfert, S., Vidoudez, C., Rezzonico, E., Hiltunen, J.K. and Poirier, Y. Molecular identification and characterization of the Arabidopsis Δ3,52,4-dienoyl-coenzyme A isomerase, a peroxisomal enzyme participating in the β-oxidation cycle of unsaturated fatty acids. Plant Physiol. 138 (2005) 1947–1956. [DOI] [PMID: 16040662]
[EC 5.3.3.21 created 2018]
 
 
EC 5.4.4.5     
Accepted name: 9,12-octadecadienoate 8-hydroperoxide 8R-isomerase
Reaction: (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate = (5S,8R,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate
Other name(s): 5,8-LDS (bifunctional enzyme); 5,8-linoleate diol synthase (bifunctional enzyme); 8-hydroperoxide isomerase; (8R,9Z,12Z)-8-hydroperoxy-9,12-octadecadienoate mutase ((5S,8R,9Z,12Z)-5,8-dihydroxy-9,12-octadecadienoate-forming); PpoA
Systematic name: (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate hydroxymutase [(5S,8R,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate-forming]
Comments: The enzyme contains heme [3]. The bifunctional enzyme from Aspergillus nidulans uses different heme domains to catalyse two separate reactions. Linoleic acid is oxidized within the N-terminal heme peroxidase domain to (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate (cf. EC 1.13.11.60, linoleate 8R-lipoxygenase), which is subsequently isomerized to (5S,8R,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate within the C-terminal P-450 heme thiolate domain [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hoffmann, I., Jerneren, F., Garscha, U. and Oliw, E.H. Expression of 5,8-LDS of Aspergillus fumigatus and its dioxygenase domain. A comparison with 7,8-LDS, 10-dioxygenase, and cyclooxygenase. Arch. Biochem. Biophys. 506 (2011) 216–222. [DOI] [PMID: 21130068]
2.  Jerneren, F., Garscha, U., Hoffmann, I., Hamberg, M. and Oliw, E.H. Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase, and 8,11-hydroperoxide isomerase of Aspergillus clavatus. Biochim. Biophys. Acta 1801 (2010) 503–507. [DOI] [PMID: 20045744]
3.  Brodhun, F., Gobel, C., Hornung, E. and Feussner, I. Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a cytochrome P450. J. Biol. Chem. 284 (2009) 11792–11805. [DOI] [PMID: 19286665]
[EC 5.4.4.5 created 2011]
 
 
EC 5.4.4.6     
Accepted name: 9,12-octadecadienoate 8-hydroperoxide 8S-isomerase
Reaction: (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate = (7S,8S,9Z,12Z)-7,8-dihydroxyoctadeca-9,12-dienoate
Other name(s): 8-hydroperoxide isomerase (ambiguous); (8R,9Z,12Z)-8-hydroperoxy-9,12-octadecadienoate mutase ((7S,8S,9Z,12Z)-7,8-dihydroxy-9,12-octadecadienoate-forming)
Systematic name: (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate hydroxymutase [(7S,8S,9Z,12Z)-7,8-dihydroxyoctadeca-9,12-dienoate-forming]
Comments: The enzyme contains heme. The bifunctional enzyme from Gaeumannomyces graminis catalyses the oxidation of linoleic acid to (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate (cf. EC 1.13.11.60, linoleate 8R-lipoxygenase), which is then isomerized to (7S,8S,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hamberg, M., Zhang, L.-Y., Brodowsky, I.D. and Oliw, E.H. Sequential oxygenation of linoleic acid in the fungus Gaeumannomyces graminis: stereochemistry of dioxygenase and hydroperoxide isomerase reactions. Arch. Biochem. Biophys. 309 (1994) 77–80. [DOI] [PMID: 8117115]
2.  Su, C., Sahlin, M. and Oliw, E.H. A protein radical and ferryl intermediates are generated by linoleate diol synthase, a ferric hemeprotein with dioxygenase and hydroperoxide isomerase activities. J. Biol. Chem. 273 (1998) 20744–20751. [DOI] [PMID: 9694817]
3.  Su, C. and Oliw, E.H. Purification and characterization of linoleate 8-dioxygenase from the fungus Gaeumannomyces graminis as a novel hemoprotein. J. Biol. Chem. 271 (1996) 14112–14118. [DOI] [PMID: 8662736]
[EC 5.4.4.6 created 2011]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald