The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

Accepted name: pimeloyl-[acyl-carrier protein] synthase
Reaction: a long-chain acyl-[acyl-carrier protein] + 2 reduced flavodoxin + 3 O2 = pimeloyl-[acyl-carrier protein] + an n-alkanal + 2 oxidized flavodoxin + 3 H2O (overall reaction)
(1a) a long-chain acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a (7S)-7-hydroxy-long-chain-acyl-[acyl-carrier protein] + oxidized flavodoxin + H2O
(1b) a (7S)-7-hydroxy-long-chain-acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a (7R,8R)-7,8-dihydroxy-long-chain-acyl-[acyl-carrier protein] + oxidized flavodoxin + H2O
(1c) a (7R,8R)-7,8-dihydroxy-long-chain-acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a 7-oxoheptanoyl-[acyl-carrier protein] + an n-alkanal + oxidized flavodoxin + 2 H2O
(1d) a 7-oxoheptanoyl-[acyl-carrier protein] + oxidized flavodoxin + H2O = a pimeloyl-[acyl-carrier protein] + reduced flavodoxin + H+
Glossary: a long-chain acyl-[acyl-carrier protein] = an acyl-[acyl-carrier protein] thioester where the acyl chain contains 13 to 22 carbon atoms.
palmitoyl-[acyl-carrier protein] = hexadecanoyl-[acyl-carrier protein]
pimeloyl-[acyl-carrier protein] = 6-carboxyhexanoyl-[acyl-carrier protein]
Other name(s): bioI (gene name); P450BioI; CYP107H1
Systematic name: acyl-[acyl-carrier protein],reduced-flavodoxin:oxygen oxidoreductase (pimeloyl-[acyl-carrier protein]-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme catalyses an oxidative C-C bond cleavage of long-chain acyl-[acyl-carrier protein]s of various lengths to generate pimeloyl-[acyl-carrier protein], an intermediate in the biosynthesis of biotin. The preferred substrate of the enzyme from the bacterium Bacillus subtilis is palmitoyl-[acyl-carrier protein] which then gives heptanal as the alkanal. The mechanism is similar to EC, cholesterol monooxygenase (side-chain-cleaving), followed by a hydroxylation step, which may occur spontaneously [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Stok, J.E. and De Voss, J. Expression, purification, and characterization of BioI: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch. Biochem. Biophys. 384 (2000) 351–360. [DOI] [PMID: 11368323]
2.  Cryle, M.J. and De Voss, J.J. Carbon-carbon bond cleavage by cytochrome p450(BioI)(CYP107H1). Chem. Commun. (Camb.) (2004) 86–87. [DOI] [PMID: 14737344]
3.  Cryle, M.J. and Schlichting, I. Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc. Natl. Acad. Sci. USA 105 (2008) 15696–15701. [DOI] [PMID: 18838690]
4.  Cryle, M.J. Selectivity in a barren landscape: the P450(BioI)-ACP complex. Biochem. Soc. Trans. 38 (2010) 934–939. [DOI] [PMID: 20658980]
[EC created 2013 as EC, transferred 2017 to EC]
Transferred entry: pimeloyl-[acyl-carrier protein] synthase. Now EC, pimeloyl-[acyl-carrier protein] synthase
[EC created 2013, deleted 2017]
Accepted name: acyl-[acyl-carrier-protein] 4-desaturase
Reaction: palmitoyl-[acyl-carrier protein] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = (4Z)-hexadec-4-enoyl-[acyl-carrier protein] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): Δ4-palmitoyl-[acyl carrier protein] desaturase
Systematic name: palmitoyl-[acyl-carrier protein],reduced acceptor:oxygen oxidoreductase (4,5 cis-dehydrogenating)
Comments: The enzymes from the plants Coriandrum sativum (coriander) and Hedera helix (English ivy) are involved in biosynthesis of petroselinate [(6Z)-octadec-6-enoate], which is formed by elongation of (4Z)-hexadec-4-enoate. The ivy enzyme can also act on oleoyl-[acyl-carrier protein] and palmitoleoyl-[acyl-carrier protein], generating the corresponding 4,9-diene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Cahoon, E.B., Shanklin, J. and Ohlrogge, J.B. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc. Natl. Acad. Sci. USA 89 (1992) 11184–11188. [DOI] [PMID: 1454797]
2.  Cahoon, E.B. and Ohlrogge, J.B. Metabolic evidence for the involvement of a Δ4-palmitoyl-acyl carrier protein desaturase in petroselinic acid synthesis in coriander endosperm and transgenic tobacco cells. Plant Physiol. 104 (1994) 827–837. [PMID: 12232129]
3.  Whittle, E., Cahoon, E.B., Subrahmanyam, S. and Shanklin, J. A multifunctional acyl-acyl carrier protein desaturase from Hedera helix L. (English ivy) can synthesize 16- and 18-carbon monoene and diene products. J. Biol. Chem. 280 (2005) 28169–28176. [DOI] [PMID: 15939740]
[EC created 2015]
Accepted name: acyl-[acyl-carrier-protein] 6-desaturase
Reaction: palmitoyl-[acyl-carrier protein] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = (6Z)-hexadec-6-enoyl-[acyl-carrier protein] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Glossary: (6Z)-hexadec-6-enoyl-[acyl-carrier protein] = Δ6-hexadecenoyl-[acyl-carrier protein] = sapienoyl-[acyl-carrier-protein]
an [acyl-carrier protein] = ACP = [acp]
Other name(s): DELTA6 palmitoyl-ACP desaturase; DELTA6 16:0-ACP desaturase
Systematic name: palmitoyl-[acyl-carrier protein],reduced ferredoxin:oxygen oxidoreductase (6,7 cis-dehydrogenating)
Comments: The enzyme, characterized from the endosperm of the plant Thunbergia alata (black-eyed Susan vine), introduces a cis double bond at carbon 6 of several saturated acyl-[acp]s. It is most active with palmitoyl-[acp] (16:0), but can also act on myristoyl-[acp] (14:0) and stearoyl-[acp] (18:0). The position of the double bond is determined by its distance from the carboxyl end of the fatty acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Cahoon, E.B., Cranmer, A.M., Shanklin, J. and Ohlrogge, J.B. Δ6 Hexadecenoic acid is synthesized by the activity of a soluble Δ6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm. J. Biol. Chem. 269 (1994) 27519–27526. [PMID: 7961667]
2.  Cahoon, E.B., Lindqvist, Y., Schneider, G. and Shanklin, J. Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc. Natl. Acad. Sci. USA 94 (1997) 4872–4877. [DOI] [PMID: 9144157]
[EC created 2015]
Deleted entry: 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase. The reaction described is covered by EC
[EC created 1972, deleted 2012]

Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald