The Enzyme Database

Your query returned 3 entries.    printer_iconPrintable version

EC 2.3.1.156     
Accepted name: phloroisovalerophenone synthase
Reaction: (1) isovaleryl-CoA + 3 malonyl-CoA = 4 CoA + 3 CO2 + phlorisovalerophenone
(2) isobutyryl-CoA + 3 malonyl-CoA = 4 CoA + 3 CO2 + phlorisobutyrophenone
For diagram of polyketides biosynthesis, click here
Glossary: phlorisobutyrophenone = 2-methyl-1-(2,4,6-trihydroxyphenyl)propan-1-one
phlorisovalerophenone = 3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one
Other name(s): valerophenone synthase; 3-methyl-1-(trihydroxyphenyl)butan-1-one synthase; acylphloroglucinol synthase; isovaleryl-CoA:malonyl-CoA acyltransferase
Systematic name: acyl-CoA:malonyl-CoA acyltransferase
Comments: Closely related to EC 2.3.1.74, naringenin-chalcone synthase. Also acts on isobutyryl-CoA as substrate to give phlorisobutyrophenone. The products are intermediates in the biosynthesis of the bitter acids in hops (Humulus lupulus) and glucosides in strawberry (Fragaria X ananassa). It is also able to generate naringenin chalcone from 4-coumaroyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fung, S.Y., Zuurbier, K.W.M., Paniego, N.B., Scheffer, J.J.C. and Verpoorte, R. Enzymes from the biosynthesis of hop α and β acids. Proc. 26th Congr. Eur. Brew. Conv. (1997) 215–221.
2.  Zuurbier, K.W.M., Leser, J., Berger, T., Hofte, A.J.P., Schroder, G., Verpoorte, R. and Schroder, J. 4-Hydroxy-2-pyrone formation by chalcone and stilbene synthase with nonphysiological substrates. Phytochemistry 49 (1998) 1945–1951. [PMID: 9883590]
3.  Song, C., Ring, L., Hoffmann, T., Huang, F.C., Slovin, J. and Schwab, W. Acylphloroglucinol biosynthesis in strawberry fruit. Plant Physiol. 169 (2015) 1656–1670. [DOI] [PMID: 26169681]
[EC 2.3.1.156 created 2000]
 
 
EC 2.4.1.358     
Accepted name: acylphloroglucinol glucosyltransferase
Reaction: UDP-α-D-glucose + 2-acylphloroglucinol = UDP + 2-acylphloroglucinol 1-O-β-D-glucoside
Glossary: phlorisobutyrophenone = 2-methyl-1-(2,4,6-trihydroxyphenyl)propan-1-one
phlorisovalerophenone = 3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one
Other name(s): UGT71K3
Systematic name: UDP-α-D-glucose:2-acylphloroglucinol 1-O-β-glucosyltransferase
Comments: Isolated from strawberries (Fragaria X ananassa). Acts best on phloroisovalerophenone and phlorobutyrophenone but will also glycosylate many other phenolic compounds. A minor product of the reaction is the 5-O-β-D-glucoside.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Song, C., Zhao, S., Hong, X., Liu, J., Schulenburg, K. and Schwab, W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria x ananassa). Plant J. 85 (2016) 730–742. [PMID: 26859691]
[EC 2.4.1.358 created 2018]
 
 
EC 2.5.1.136     
Accepted name: 2-acylphloroglucinol 4-prenyltransferase
Reaction: prenyl diphosphate + a 2-acylphloroglucinol = diphosphate + a 2-acyl-4-prenylphloroglucinol
Glossary: naringenin chalcone = 2′,4,4′,6′-tetrahydroxychalcone = 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)prop-2-en-1-one
phlorisovalerophenone = 3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one
Other name(s): PT-1 (gene name); PT1L (gene name); aromatic prenyltransferase (ambiguous); dimethylallyl-diphosphate:2-acylphloroglucinol 4-dimethylallyltransferase
Systematic name: prenyl-diphosphate:2-acylphloroglucinol 4-prenyltransferase
Comments: The enzyme, characterized from hop (Humulus lupulus), acts on phlorisovalerophenone, phlormethylbutanophenone, and phlorisobutanophenone during the synthesis of bitter acids. It also acts with much lower activity on naringenin chalcone. Forms a complex with EC 2.5.1.137, 2-acyl-4-prenylphloroglucinol 6-prenyltransferase, which catalyses additional prenylation reactions. Requires Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tsurumaru, Y., Sasaki, K., Miyawaki, T., Uto, Y., Momma, T., Umemoto, N., Momose, M. and Yazaki, K. HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops. Biochem. Biophys. Res. Commun. 417 (2012) 393–398. [DOI] [PMID: 22166201]
2.  Li, H., Ban, Z., Qin, H., Ma, L., King, A.J. and Wang, G. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol. 167 (2015) 650–659. [DOI] [PMID: 25564559]
[EC 2.5.1.136 created 2017]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald