The Enzyme Database

Your query returned 9 entries.    printer_iconPrintable version



EC 1.3.8.1     
Accepted name: short-chain acyl-CoA dehydrogenase
Reaction: a short-chain acyl-CoA + electron-transfer flavoprotein = a short-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a short-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains less than 6 carbon atoms.
Other name(s): butyryl-CoA dehydrogenase; butanoyl-CoA dehydrogenase; butyryl dehydrogenase; unsaturated acyl-CoA reductase; ethylene reductase; enoyl-coenzyme A reductase; unsaturated acyl coenzyme A reductase; butyryl coenzyme A dehydrogenase; short-chain acyl CoA dehydrogenase; short-chain acyl-coenzyme A dehydrogenase; 3-hydroxyacyl CoA reductase; butanoyl-CoA:(acceptor) 2,3-oxidoreductase; ACADS (gene name).
Systematic name: short-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme catalyses the oxidation of saturated short-chain acyl-CoA thioesters to give a trans 2,3-unsaturated product by removal of the two pro-R-hydrogen atoms. The enzyme from beef liver accepts substrates with acyl chain lengths of 3 to 8 carbon atoms. The highest activity was reported with either butanoyl-CoA [2] or pentanoyl-CoA [4]. The enzyme from rat has only 10% activity with hexanoyl-CoA (compared to butanoyl-CoA) and no activity with octanoyl-CoA [6]. cf. EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 9027-88-7
References:
1.  Mahler, H.R. Studies on the fatty acid oxidizing system of animal tissue. IV. The prosthetic group of butyryl coenzyme A dehydrogenase. J. Biol. Chem. 206 (1954) 13–26. [PMID: 13130522]
2.  Green, D.E., Mii, S., Mahler, H.R. and Bock, R.M. Studies on the fatty acid oxidizing system of animal tissue. III. Butyryl coenzyme A dehydrogenase. J. Biol. Chem. 206 (1954) 1–12. [PMID: 13130521]
3.  Beinert, H. Acyl coenzyme A dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 447–466.
4.  Shaw, L. and Engel, P.C. The purification and properties of ox liver short-chain acyl-CoA dehydrogenase. Biochem. J. 218 (1984) 511–520. [PMID: 6712627]
5.  Thorpe, C. and Kim, J.J. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 9 (1995) 718–725. [PMID: 7601336]
6.  Ikeda, Y., Ikeda, K.O. and Tanaka, K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J. Biol. Chem. 260 (1985) 1311–1325. [PMID: 3968063]
7.  McMahon, B., Gallagher, M.E. and Mayhew, S.G. The protein coded by the PP2216 gene of Pseudomonas putida KT2440 is an acyl-CoA dehydrogenase that oxidises only short-chain aliphatic substrates. FEMS Microbiol. Lett. 250 (2005) 121–127. [DOI] [PMID: 16024185]
[EC 1.3.8.1 created 1961 as EC 1.3.2.1, transferred 1964 to EC 1.3.99.2, transferred 2011 to EC 1.3.8.1, modified 2012]
 
 
EC 1.3.8.7     
Accepted name: medium-chain acyl-CoA dehydrogenase
Reaction: a medium-chain acyl-CoA + electron-transfer flavoprotein = a medium-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a medium-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 6 to 12 carbon atoms.
Other name(s): fatty acyl coenzyme A dehydrogenase (ambiguous); acyl coenzyme A dehydrogenase (ambiguous); acyl dehydrogenase (ambiguous); fatty-acyl-CoA dehydrogenase (ambiguous); acyl CoA dehydrogenase (ambiguous); general acyl CoA dehydrogenase (ambiguous); medium-chain acyl-coenzyme A dehydrogenase; acyl-CoA:(acceptor) 2,3-oxidoreductase (ambiguous); ACADM (gene name).
Systematic name: medium-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme from pig liver can accept substrates with acyl chain lengths of 4 to 16 carbon atoms, but is most active with C8 to C12 compounds [2]. The enzyme from rat does not accept C16 at all and is most active with C6-C8 compounds [4]. cf. EC 1.3.8.1, short-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Crane, F.L., Hauge, J.G. and Beinert, H. Flavoproteins involved in the first oxidative step of the fatty acid cycle. Biochim. Biophys. Acta 17 (1955) 292–294. [DOI] [PMID: 13239683]
2.  Crane, F.L., Mii, S., Hauge, J.G., Green, D.E. and Beinert, H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. I. The general fatty acyl coenzyme A dehydrogenase. J. Biol. Chem. 218 (1956) 701–716. [PMID: 13295224]
3.  Beinert, H. Acyl coenzyme A dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 447–466.
4.  Ikeda, Y., Ikeda, K.O. and Tanaka, K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J. Biol. Chem. 260 (1985) 1311–1325. [PMID: 3968063]
5.  Thorpe, C. and Kim, J.J. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 9 (1995) 718–725. [PMID: 7601336]
6.  Kim, J.J., Wang, M. and Paschke, R. Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate. Proc. Natl. Acad. Sci. USA 90 (1993) 7523–7527. [DOI] [PMID: 8356049]
7.  Peterson, K.L., Sergienko, E.E., Wu, Y., Kumar, N.R., Strauss, A.W., Oleson, A.E., Muhonen, W.W., Shabb, J.B. and Srivastava, D.K. Recombinant human liver medium-chain acyl-CoA dehydrogenase: purification, characterization, and the mechanism of interactions with functionally diverse C8-CoA molecules. Biochemistry 34 (1995) 14942–14953. [PMID: 7578106]
8.  Toogood, H.S., van Thiel, A., Basran, J., Sutcliffe, M.J., Scrutton, N.S. and Leys, D. Extensive domain motion and electron transfer in the human electron transferring flavoprotein.medium chain Acyl-CoA dehydrogenase complex. J. Biol. Chem. 279 (2004) 32904–32912. [DOI] [PMID: 15159392]
[EC 1.3.8.7 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, part transferred 2012 to EC 1.3.8.7]
 
 
EC 1.3.8.8     
Accepted name: long-chain acyl-CoA dehydrogenase
Reaction: a long-chain acyl-CoA + electron-transfer flavoprotein = a long-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 13 to 22 carbon atoms.
Other name(s): palmitoyl-CoA dehydrogenase; palmitoyl-coenzyme A dehydrogenase; long-chain acyl-coenzyme A dehydrogenase; long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase; ACADL (gene name).
Systematic name: long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme from pig liver can accept substrates with acyl chain lengths of 6 to at least 16 carbon atoms. The highest activity was found with C12, and the rates with C8 and C16 were 80 and 70%, respectively [2]. The enzyme from rat can accept substrates with C8-C22. It is most active with C14 and C16, and has no activity with C4, C6 or C24 [4]. cf. EC 1.3.8.1, short-chain acyl-CoA dehydrogenase, EC 1.3.8.8, medium-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 59536-74-2
References:
1.  Crane, F.L., Hauge, J.G. and Beinert, H. Flavoproteins involved in the first oxidative step of the fatty acid cycle. Biochim. Biophys. Acta 17 (1955) 292–294. [DOI] [PMID: 13239683]
2.  Hauge, J.G., Crane, F.L. and Beinert, H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. III. Palmityl CoA dehydrogenase. J. Biol. Chem. 219 (1956) 727–733. [PMID: 13319294]
3.  Hall, C.L., Heijkenkjold, L., Bartfai, T., Ernster, L. and Kamin, H. Acyl coenzyme A dehydrogenases and electron-transferring flavoprotein from beef heart mitochondria. Arch. Biochem. Biophys. 177 (1976) 402–414. [DOI] [PMID: 1015826]
4.  Ikeda, Y., Ikeda, K.O. and Tanaka, K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J. Biol. Chem. 260 (1985) 1311–1325. [PMID: 3968063]
5.  Djordjevic, S., Dong, Y., Paschke, R., Frerman, F.E., Strauss, A.W. and Kim, J.J. Identification of the catalytic base in long chain acyl-CoA dehydrogenase. Biochemistry 33 (1994) 4258–4264. [PMID: 8155643]
[EC 1.3.8.8 created 1989 as EC 1.3.99.13, part transferred 2012 to EC 1.3.8.8]
 
 
EC 1.3.8.9     
Accepted name: very-long-chain acyl-CoA dehydrogenase
Reaction: a very-long-chain acyl-CoA + electron-transfer flavoprotein = a very-long-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): ACADVL (gene name).
Systematic name: very-long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme is most active toward long-chain acyl-CoAs such as C14, C16 and C18, but is also active with very-long-chain acyl-CoAs up to 24 carbons. It shows no activity for substrates of less than 12 carbons. Its specific activity towards palmitoyl-CoA is more than 10-fold that of the long-chain acyl-CoA dehydrogenase [1]. cf. EC 1.3.8.1, short-chain acyl-CoA dehydrogenase, EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, and EC 1.3.8.8, long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Izai, K., Uchida, Y., Orii, T., Yamamoto, S. and Hashimoto, T. Novel fatty acid β-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J. Biol. Chem. 267 (1992) 1027–1033. [PMID: 1730632]
2.  Aoyama, T., Souri, M., Ushikubo, S., Kamijo, T., Yamaguchi, S., Kelley, R.I., Rhead, W.J., Uetake, K., Tanaka, K. and Hashimoto, T. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J. Clin. Invest. 95 (1995) 2465–2473. [DOI] [PMID: 7769092]
3.  McAndrew, R.P., Wang, Y., Mohsen, A.W., He, M., Vockley, J. and Kim, J.J. Structural basis for substrate fatty acyl chain specificity: crystal structure of human very-long-chain acyl-CoA dehydrogenase. J. Biol. Chem. 283 (2008) 9435–9443. [DOI] [PMID: 18227065]
[EC 1.3.8.9 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, part transferred 2012 to EC 1.3.8.9]
 
 
EC 2.3.1.8     
Accepted name: phosphate acetyltransferase
Reaction: acetyl-CoA + phosphate = CoA + acetyl phosphate
Other name(s): phosphotransacetylase; phosphoacylase; PTA
Systematic name: acetyl-CoA:phosphate acetyltransferase
Comments: Also acts with other short-chain acyl-CoAs.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9029-91-8
References:
1.  Bergmeyer, H.U., Holz, G., Klotzsch, H. and Lang, G. Phosphotransacetylase aus Clostridium kluyveri. Züchtung des Bacteriums, Isolierung, Krystallisation und Eigenschaften des Enzyms. Biochem. Z. 338 (1963) 114–121. [PMID: 14087284]
2.  Stadtman, E.R. The purification and properties of phosphotransacetylase. J. Biol. Chem. 196 (1952) 527–534. [PMID: 12980995]
3.  Stadtman, E.R. Phosphotransacetylase from Clostridium kluyveri. Methods Enzymol. 1 (1955) 596–599.
[EC 2.3.1.8 created 1961, modified 1976]
 
 
EC 2.3.1.180     
Accepted name: β-ketoacyl-[acyl-carrier-protein] synthase III
Reaction: acetyl-CoA + a malonyl-[acyl-carrier protein] = an acetoacetyl-[acyl-carrier protein] + CoA + CO2
Other name(s): 3-oxoacyl:ACP synthase III; 3-ketoacyl-acyl carrier protein synthase III; KASIII; KAS III; FabH; β-ketoacyl-acyl carrier protein synthase III; β-ketoacyl-ACP synthase III; β-ketoacyl (acyl carrier protein) synthase III; acetyl-CoA:malonyl-[acyl-carrier-protein] C-acyltransferase
Systematic name: acetyl-CoA:malonyl-[acyl-carrier protein] C-acyltransferase
Comments: The enzyme is responsible for initiating straight-chain fatty acid biosynthesis by the dissociated (or type II) fatty-acid biosynthesis system that occurs in plants and bacteria. In contrast to EC 2.3.1.41, β-ketoacyl-[acyl-carrier-protein] synthase I, and EC 2.3.1.179, β-ketoacyl-[acyl-carrier-protein] synthase II, this enzyme specifically uses short-chain acyl-CoA thioesters (preferably acetyl-CoA) rather than acyl-[acp] as its substrate [1]. The enzyme can also catalyse the reaction of EC 2.3.1.38, [acyl-carrier-protein] S-acetyltransferase, but to a much lesser extent [1]. The enzymes from some organisms (e.g. the Gram-positive bacterium Streptococcus pneumoniae) can accept branched-chain acyl-CoAs in addition to acetyl-CoA [5] (cf. EC 2.3.1.300, branched-chain β-ketoacyl-[acyl-carrier-protein] synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 1048646-78-1
References:
1.  Tsay, J.T., Oh, W., Larson, T.J., Jackowski, S. and Rock, C.O. Isolation and characterization of the β-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J. Biol. Chem. 267 (1992) 6807–6814. [PMID: 1551888]
2.  Cronan, J.E., Jr. and Rock, C.O. Biosynthesis of membrane lipids. In: Neidhardt, F.C. (Ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, vol. 1, ASM Press, Washington, DC, 1996, pp. 612–636.
3.  Han, L., Lobo, S. and Reynolds, K.A. Characterization of β-ketoacyl-acyl carrier protein synthase III from Streptomyces glaucescens and its role in initiation of fatty acid biosynthesis. J. Bacteriol. 180 (1998) 4481–4486. [DOI] [PMID: 9721286]
4.  Choi, K.H., Kremer, L., Besra, G.S. and Rock, C.O. Identification and substrate specificity of β-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem. 275 (2000) 28201–28207. [DOI] [PMID: 10840036]
5.  Khandekar, S.S., Gentry, D.R., Van Aller, G.S., Warren, P., Xiang, H., Silverman, C., Doyle, M.L., Chambers, P.A., Konstantinidis, A.K., Brandt, M., Daines, R.A. and Lonsdale, J.T. Identification, substrate specificity, and inhibition of the Streptococcus pneumoniae β-ketoacyl-acyl carrier protein synthase III (FabH). J. Biol. Chem. 276 (2001) 30024–30030. [DOI] [PMID: 11375394]
6.  Qiu, X., Choudhry, A.E., Janson, C.A., Grooms, M., Daines, R.A., Lonsdale, J.T. and Khandekar, S.S. Crystal structure and substrate specificity of the β-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. Protein Sci. 14 (2005) 2087–2094. [DOI] [PMID: 15987898]
7.  Li, Y., Florova, G. and Reynolds, K.A. Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH). J. Bacteriol. 187 (2005) 3795–3799. [DOI] [PMID: 15901703]
[EC 2.3.1.180 created 2006, modified 2021]
 
 
EC 2.3.1.301     
Accepted name: mycobacterial β-ketoacyl-[acyl carrier protein] synthase III
Reaction: dodecanoyl-CoA + a malonyl-[acyl-carrier protein] = a 3-oxotetradecanoyl-[acyl-carrier protein] + CoA + CO2
Glossary: dodecanoyl-CoA = lauroyl-CoA
Other name(s): fabH (gene name) (ambiguous); mycobacterial 3-oxoacyl-[acyl carrier protein] synthase III
Systematic name: dodecanoyl-CoA:malonyl-[acyl-carrier protein] C-acyltransferase
Comments: The enzyme, characterized from mycobacteria, provides a link between the type I and type II fatty acid synthase systems (FAS-I and FAS-II, respectively) found in these organisms. The enzyme acts on medium- and long-chain acyl-CoAs (C12-C16) produced by the FAS-I system, condensing them with malonyl-[acyl-carrier protein] (malonyl-AcpM) and forming starter molecules for the FAS-II system, which elongates them into meromycolic acids. The enzyme has no activity with short-chain acyl-CoAs (e.g. acetyl-CoA), which are used by EC 2.3.1.180, β-ketoacyl-[acyl-carrier-protein] synthase III, or branched-chain acyl-CoAs, which are used by EC 2.3.1.300, branched-chain β-ketoacyl-[acyl-carrier-protein] synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Scarsdale, J.N., Kazanina, G., He, X., Reynolds, K.A. and Wright, H.T. Crystal structure of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III. J. Biol. Chem. 276 (2001) 20516–20522. [DOI] [PMID: 11278743]
2.  Musayev, F., Sachdeva, S., Scarsdale, J.N., Reynolds, K.A. and Wright, H.T. Crystal structure of a substrate complex of Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III (FabH) with lauroyl-coenzyme A. J. Mol. Biol. 346 (2005) 1313–1321. [DOI] [PMID: 15713483]
3.  Brown, A.K., Sridharan, S., Kremer, L., Lindenberg, S., Dover, L.G., Sacchettini, J.C. and Besra, G.S. Probing the mechanism of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity. J. Biol. Chem. 280 (2005) 32539–32547. [DOI] [PMID: 16040614]
4.  Sachdeva, S., Musayev, F.N., Alhamadsheh, M.M., Scarsdale, J.N., Wright, H.T. and Reynolds, K.A. Separate entrance and exit portals for ligand traffic in Mycobacterium tuberculosis FabH. Chem. Biol. 15 (2008) 402–412. [DOI] [PMID: 18420147]
[EC 2.3.1.301 created 2021]
 
 
EC 3.1.2.18     
Accepted name: ADP-dependent short-chain-acyl-CoA hydrolase
Reaction: acyl-CoA + H2O = CoA + a carboxylate
Other name(s): short-chain acyl coenzyme A hydrolase; propionyl coenzyme A hydrolase; propionyl-CoA hydrolase; propionyl-CoA thioesterase; short-chain acyl-CoA hydrolase; short-chain acyl-CoA thioesterase
Systematic name: ADP-dependent-short-chain-acyl-CoA hydrolase
Comments: Requires ADP; inhibited by NADH. Maximum activity is shown with propanoyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 117698-16-5
References:
1.  Alexson, S.E.H. and Nedergaard, J. A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria. J. Biol. Chem. 263 (1988) 13564–13571. [PMID: 2901416]
2.  Alexson, S.E.H., Svensson, L.T. and Nedergaard, J. NADH-sensitive propionyl-CoA hydrolase in brown-adipose-tissue mitochondria of the rat. Biochim. Biophys. Acta 1005 (1989) 13–19. [DOI] [PMID: 2570608]
[EC 3.1.2.18 created 1992]
 
 
EC 6.2.1.2     
Accepted name: medium-chain acyl-CoA ligase
Reaction: ATP + a medium-chain fatty acid + CoA = AMP + diphosphate + a medium-chain acyl-CoA
Other name(s): fadK (gene name); lvaE (gene name); butyryl-CoA synthetase; fatty acid thiokinase (medium chain); acyl-activating enzyme; fatty acid elongase; fatty acid activating enzyme; fatty acyl coenzyme A synthetase; butyrate—CoA ligase; butyryl-coenzyme A synthetase; L-(+)-3-hydroxybutyryl CoA ligase; short-chain acyl-CoA synthetase; medium-chain acyl-CoA synthetase; butanoate:CoA ligase (AMP-forming)
Systematic name: medium-chain fatty acid:CoA ligase (AMP-forming)
Comments: Acts on fatty acids from C4 to C11 and on the corresponding 3-hydroxy and 2,3- or 3,4-unsaturated acids. The enzyme from the bacterium Pseudomonas putida also acts on 4-oxo and 4-hydroxy derivatives.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9080-51-7
References:
1.  Mahler, H.R., Wakil, S.J. and Bock, R.M. Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J. Biol. Chem. 204 (1953) 453–468. [PMID: 13084616]
2.  Massaro, E.J. and Lennarz, W.J. The partial purification and characterization of a bacterial fatty acyl coenzyme A synthetase. Biochemistry 4 (1965) 85–90. [PMID: 14285249]
3.  Websterlt, J.R., Gerowin, L.D. and Rakita, L. Purification and characteristics of a butyryl coenzyme A synthetase from bovine heart mitochondria. J. Biol. Chem. 240 (1965) 29–33. [PMID: 14253428]
4.  Morgan-Kiss, R.M. and Cronan, J.E. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J. Biol. Chem. 279 (2004) 37324–37333. [PMID: 15213221]
5.  Rand, J.M., Pisithkul, T., Clark, R.L., Thiede, J.M., Mehrer, C.R., Agnew, D.E., Campbell, C.E., Markley, A.L., Price, M.N., Ray, J., Wetmore, K.M., Suh, Y., Arkin, A.P., Deutschbauer, A.M., Amador-Noguez, D. and Pfleger, B.F. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol 2 (2017) 1624–1634. [PMID: 28947739]
[EC 6.2.1.2 created 1961, modified 2011, modified 2018]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald