The Enzyme Database

Your query returned 23 entries.    printer_iconPrintable version



EC 1.1.1.313     
Accepted name: sulfoacetaldehyde reductase
Reaction: isethionate + NADP+ = 2-sulfoacetaldehyde + NADPH + H+
Glossary: isethionate = 2-hydroxyethanesulfonate
2-sulfoacetaldehyde = 2-oxoethanesulfonate
Other name(s): isfD (gene name)
Systematic name: isethionate:NADP+ oxidoreductase
Comments: Catalyses the reaction only in the opposite direction. Involved in taurine degradation. The bacterium Chromohalobacter salexigens strain DSM 3043 possesses two enzymes that catalyse this reaction, a constitutive enzyme (encoded by isfD2) and an inducible enzyme (encoded by isfD). The latter is induced by taurine, and is responsible for most of the activity observed in taurine-grown cells.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Krejcik, Z., Hollemeyer, K., Smits, T.H. and Cook, A.M. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. Microbiology 156 (2010) 1547–1555. [DOI] [PMID: 20133363]
[EC 1.1.1.313 created 2011]
 
 
EC 1.2.1.73     
Accepted name: sulfoacetaldehyde dehydrogenase
Reaction: 2-sulfoacetaldehyde + H2O + NAD+ = sulfoacetate + NADH + 2 H+
Glossary: 2-sulfoacetaldehyde = 2-oxoethanesulfonate
taurine = 2-aminoethanesulfonate
Other name(s): SafD
Systematic name: 2-sulfoacetaldehyde:NAD+ oxidoreductase
Comments: This reaction is part of a bacterial pathway that can utilize the amino group of taurine as a sole source of nitrogen for growth. At physiological concentrations, NAD+ cannot be replaced by NADP+. The enzyme is specific for sulfoacetaldehyde, as formaldehyde, acetaldehyde, betaine aldehyde, propanal, glyceraldehyde, phosphonoacetaldehyde, glyoxylate, glycolaldehyde and 2-oxobutyrate are not substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Krejčík, Z., Denger, K., Weinitschke, S., Hollemeyer, K., Pačes, V., Cook, A.M. and Smits, T.H.M. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch. Microbiol. 190 (2008) 159–168. [DOI] [PMID: 18506422]
[EC 1.2.1.73 created 2008]
 
 
EC 1.4.99.2     
Accepted name: taurine dehydrogenase
Reaction: taurine + H2O + acceptor = 2-sulfoacetaldehyde + NH3 + reduced acceptor
Glossary: 2-sulfoacetaldehyde = 2-oxoethanesulfonate
taurine = 2-aminoethanesulfonate
Other name(s): taurine:(acceptor) oxidoreductase (deaminating)
Systematic name: taurine:acceptor oxidoreductase (deaminating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 50812-14-1
References:
1.  Kondo, H., Kagotani, K., Oshima, M. and Ishimoto, M. Purification and some properties of taurine dehydrogenase from a bacterium. J. Biochem. (Tokyo) 73 (1973) 1269–1278. [PMID: 4724302]
[EC 1.4.99.2 created 1976]
 
 
EC 1.5.1.23     
Accepted name: tauropine dehydrogenase
Reaction: tauropine + NAD+ + H2O = taurine + pyruvate + NADH + H+
Glossary: tauropine = N2-(D-1-carboxyethyl)-2-aminoethanesulfonate
Other name(s): 2-N-(D-1-carboxyethyl)taurine:NAD+ oxidoreductase (taurine-forming)
Systematic name: N2-(D-1-carboxyethyl)taurine:NAD+ oxidoreductase (taurine-forming)
Comments: In the reverse reaction, alanine can act instead of taurine, but more slowly, and 2-oxobutanoate and 2-oxopentanoate can act instead of pyruvate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 104645-74-1
References:
1.  Gäde, G. Purification and properties of tauropine dehydrogenase from the shell adductor muscle of the ormer, Haliotis lamellosa. Eur. J. Biochem. 160 (1986) 311–318. [DOI] [PMID: 3769931]
[EC 1.5.1.23 created 1989]
 
 
EC 1.8.1.3     
Accepted name: hypotaurine dehydrogenase
Reaction: hypotaurine + H2O + NAD+ = taurine + NADH + H+
For diagram of taurine biosynthesis, click here
Systematic name: hypotaurine:NAD+ oxidoreductase
Comments: A molybdohemoprotein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-46-5
References:
1.  Sumizu, K. Oxidation of hypotaurine in rat liver. Biochim. Biophys. Acta 63 (1962) 210–212. [DOI] [PMID: 13979247]
[EC 1.8.1.3 created 1972]
 
 
EC 1.13.11.19     
Accepted name: cysteamine dioxygenase
Reaction: cysteamine + O2 = hypotaurine
For diagram of taurine biosynthesis, click here
Glossary: cysteamine = 2-aminoethanethiol
Other name(s): ADO (gene name); persulfurase; cysteamine oxygenase; cysteamine:oxygen oxidoreductase
Systematic name: 2-aminoethanethiol:oxygen oxidoreductase
Comments: A non-heme iron protein that is involved in the biosynthesis of taurine. 3-Aminopropanethiol (homocysteamine) and 2-sulfanylethan-1-ol (2-mercaptoethanol) can also act as substrates, but glutathione, cysteine, and cysteine ethyl- and methyl esters are not good substrates [1,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9033-41-4
References:
1.  Cavallini, D., de Marco, C., Scandurra, R., Duprè, S. and Graziani, M.T. The enzymatic oxidation of cysteamine to hypotaurine. Purification and properties of the enzyme. J. Biol. Chem. 241 (1966) 3189–3196. [PMID: 5912113]
2.  Wood, J.L. and Cavallini, D. Enzymic oxidation of cysteamine to hypotaurine in the absence of a cofactor. Arch. Biochem. Biophys. 119 (1967) 368–372. [DOI] [PMID: 6052430]
3.  Cavallini, D., Federici, G., Ricci, G., Duprè, S. and Antonucci, A. The specificity of cysteamine oxygenase. FEBS Lett. 56 (1975) 348–351. [DOI] [PMID: 1157952]
4.  Richerson, R.B. and Ziegler, D.M. Cysteamine dioxygenase. Methods Enzymol. 143 (1987) 410–415. [DOI] [PMID: 3657558]
5.  Dominy, J.E., Jr., Simmons, C.R., Hirschberger, L.L., Hwang, J., Coloso, R.M. and Stipanuk, M.H. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J. Biol. Chem. 282 (2007) 25189–25198. [PMID: 17581819]
[EC 1.13.11.19 created 1972, modified 2006]
 
 
EC 1.13.11.20     
Accepted name: cysteine dioxygenase
Reaction: L-cysteine + O2 = 3-sulfinoalanine
For diagram of taurine biosynthesis, click here
Other name(s): cysteine oxidase
Systematic name: L-cysteine:oxygen oxidoreductase
Comments: Requires Fe2+ and NAD(P)H.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-59-0
References:
1.  Lombardini, J.B., Singer, T.P. and Boyer, P.D. Cystein oxygenase. II. Studies on the mechanism of the reaction with 18oxygen. J. Biol. Chem. 244 (1969) 1172–1175. [PMID: 5767301]
[EC 1.13.11.20 created 1972, modified 1976]
 
 
EC 1.14.11.17     
Accepted name: taurine dioxygenase
Reaction: taurine + 2-oxoglutarate + O2 = sulfite + aminoacetaldehyde + succinate + CO2
Other name(s): 2-aminoethanesulfonate dioxygenase; α-ketoglutarate-dependent taurine dioxygenase
Systematic name: taurine, 2-oxoglutarate:oxygen oxidoreductase (sulfite-forming)
Comments: Requires FeII. The enzyme from Escherichia coli also acts on pentanesulfonate, 3-(N-morpholino)propanesulfonate and 2-(1,3-dioxoisoindolin-2-yl)ethanesulfonate, but at lower rates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 197809-75-9
References:
1.  Eichhorn, E., Van Der Poeg, J.R., Kertesz, M.A. and Leisinger, T. Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J. Biol. Chem. 272 (1997) 23031–23036. [DOI] [PMID: 9287300]
[EC 1.14.11.17 created 2000]
 
 
EC 1.14.13.97      
Transferred entry: taurochenodeoxycholate 6α-hydroxylase. Now EC 1.14.14.57, taurochenodeoxycholate 6α-hydroxylase
[EC 1.14.13.97 created 2005, deleted 2018]
 
 
EC 1.14.14.5     
Accepted name: alkanesulfonate monooxygenase
Reaction: an alkanesulfonate + FMNH2 + O2 = an aldehyde + FMN + sulfite + H2O
Glossary: an alkanesulfonate = R-CH2-SO3-
an aldehyde = R-CHO
Other name(s): SsuD; sulfate starvation-induced protein 6; alkanesulfonate,reduced-FMN:oxygen oxidoreductase
Systematic name: alkanesulfonate,FMNH2:oxygen oxidoreductase
Comments: The enzyme from Escherichia coli catalyses the desulfonation of a wide range of aliphatic sulfonates (unsubstituted C1- to C14-sulfonates as well as substituted C2-sulfonates). Does not desulfonate taurine (2-aminoethanesulfonate) or aromatic sulfonates. Does not use FMN as a bound cofactor. Instead, it uses reduced FMN (i.e., FMNH2) as a substrate. FMNH2 is provided by SsuE, the associated FMN reductase (EC 1.5.1.38).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 256383-67-2
References:
1.  Eichhorn, E., van der Ploeg, J.R. and Leisinger, T. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J. Biol. Chem. 274 (1999) 26639–26646. [DOI] [PMID: 10480865]
[EC 1.14.14.5 created 2002]
 
 
EC 1.14.14.57     
Accepted name: taurochenodeoxycholate 6α-hydroxylase
Reaction: (1) taurochenodeoxycholate + [reduced NADPH—hemoprotein reductase] + O2 = taurohyocholate + [oxidized NADPH—hemoprotein reductase] + H2O
(2) lithocholate + [reduced NADPH—hemoprotein reductase] + O2 = hyodeoxycholate + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of the biosynthesis of cholic-acid conjugates, click here
Glossary: taurochenodeoxycholic acid = N-(3α,7α-dihydroxy-5β-cholan-24-oyl)taurine
taurohyocholic acid = N-(3α,6α,7α-trihydroxy-5β-cholan-24-oyl)taurine
hyodeoxycholate = 3α,6α-dihydroxy-5β-cholan-24-oate
lithocholate = 3α-hydroxy-5β-cholan-24-oate
Other name(s): CYP3A4; CYP4A21; taurochenodeoxycholate 6α-monooxygenase
Systematic name: taurochenodeoxycholate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6α-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Requires cytochrome b5 for maximal activity. Acts on taurochenodeoxycholate, taurodeoxycholate and less readily on lithocholate and chenodeoxycholate. In adult pig (Sus scrofa), hyocholic acid replaces cholic acid as a primary bile acid [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 105669-85-0
References:
1.  Araya, Z. and Wikvall, K. 6α-Hydroxylation of taurochenodeoxycholic acid and lithocholic acid by CYP3A4 in human liver microsomes. Biochim. Biophys. Acta 1438 (1999) 47–54. [DOI] [PMID: 10216279]
2.  Araya, Z., Hellman, U. and Hansson, R. Characterisation of taurochenodeoxycholic acid 6α-hydroxylase from pig liver microsomes. Eur. J. Biochem. 231 (1995) 855–861. [DOI] [PMID: 7649186]
3.  Kramer, W., Sauber, K., Baringhaus, K.H., Kurz, M., Stengelin, S., Lange, G., Corsiero, D., Girbig, F., Konig, W. and Weyland, C. Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure. J. Biol. Chem. 276 (2001) 7291–7301. [DOI] [PMID: 11069906]
4.  Lundell, K., Hansson, R. and Wikvall, K. Cloning and expression of a pig liver taurochenodeoxycholic acid 6α-hydroxylase (CYP4A21): a novel member of the CYP4A subfamily. J. Biol. Chem. 276 (2001) 9606–9612. [DOI] [PMID: 11113117]
5.  Lundell, K. and Wikvall, K. Gene structure of pig sterol 12α-hydroxylase (CYP8B1) and expression in fetal liver: comparison with expression of taurochenodeoxycholic acid 6α-hydroxylase (CYP4A21). Biochim. Biophys. Acta 1634 (2003) 86–96. [DOI] [PMID: 14643796]
6.  Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72 (2003) 137–174. [DOI] [PMID: 12543708]
[EC 1.14.14.57 created 2005 asEC 1.14.13.97, transferred 2018 to EC 1.14.14.57]
 
 
EC 2.3.1.65     
Accepted name: bile acid-CoA:amino acid N-acyltransferase
Reaction: choloyl-CoA + glycine = CoA + glycocholate
For diagram of the biosynthesis of cholic-acid conjugates, click here
Glossary: choloyl-CoA = 3α,7α,12α-trihydroxy-5β-cholan-24-oyl-CoA
Other name(s): glycine—taurine N-acyltransferase; amino acid N-choloyltransferase; BAT; glycine N-choloyltransferase; BACAT; cholyl-CoA glycine-taurine N-acyltransferase; cholyl-CoA:taurine N-acyltransferase
Systematic name: choloyl-CoA:glycine N-choloyltransferase
Comments: Also acts on CoA derivatives of other bile acids. Taurine and 2-fluoro-β-alanine can act as substrates, but more slowly [4]. The enzyme can also conjugate fatty acids to glycine and can act as a very-long-chain acyl-CoA thioesterase [7]. Bile-acid—amino-acid conjugates serve as detergents in the gastrointestinal tract, solubilizing long chain fatty acids, mono- and diglycerides, fat-soluble vitamins and cholesterol [4]. This is the second enzyme in a two-step process leading to the conjugation of bile acids with amino acids; the first step is the conversion of bile acids into their acyl-CoA thioesters, which is catalysed by EC 6.2.1.7, cholate—CoA ligase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 65979-40-0
References:
1.  Czuba, B. and Vessey, D.A. Kinetic characterization of cholyl-CoA glycine-taurine N-acyltransferase from bovine liver. J. Biol. Chem. 255 (1980) 5296–5299. [PMID: 7372637]
2.  Jordan, T.W., Lee, R. and Lim, W.C. Isoelectric focussing of soluble and particulate benzoyl-CoA and cholyl-CoA:amino acid N-acyltransferases from rat liver. Biochem. Int. 1 (1980) 325–330.
3.  Vessey, D.A. The co-purification and common identity of cholyl CoA:glycine- and cholyl CoA:taurine-N-acyltransferase activities from bovine liver. J. Biol. Chem. 254 (1979) 2059–2063. [PMID: 422567]
4.  Johnson, M.R., Barnes, S., Kwakye, J.B. and Diasio, R.B. Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver. J. Biol. Chem. 266 (1991) 10227–10233. [PMID: 2037576]
5.  Falany, C.N., Xie, X., Wheeler, J.B., Wang, J., Smith, M., He, D. and Barnes, S. Molecular cloning and expression of rat liver bile acid CoA ligase. J. Lipid Res. 43 (2002) 2062–2071. [PMID: 12454267]
6.  He, D., Barnes, S. and Falany, C.N. Rat liver bile acid CoA:amino acid N-acyltransferase: expression, characterization, and peroxisomal localization. J. Lipid Res. 44 (2003) 2242–2249. [DOI] [PMID: 12951368]
7.  O'Byrne, J., Hunt, M.C., Rai, D.K., Saeki, M. and Alexson, S.E. The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine. J. Biol. Chem. 278 (2003) 34237–34244. [DOI] [PMID: 12810727]
[EC 2.3.1.65 created 1983, modified 2005]
 
 
EC 2.3.1.176     
Accepted name: propanoyl-CoA C-acyltransferase
Reaction: 3α,7α,12α-trihydroxy-5β-cholanoyl-CoA + propanoyl-CoA = CoA + 3α,7α,12α-trihydroxy-24-oxo-5β-cholestanoyl-CoA
For diagram of cholic acid biosynthesis (sidechain), click here
Other name(s): SCP2 (gene name); peroxisomal thiolase 2; sterol carrier protein-χ; SCPχ; PTE-2 (ambiguous); propionyl-CoA C2-trimethyltridecanoyltransferase; 3-oxopristanoyl-CoA hydrolase; 3-oxopristanoyl-CoA thiolase; peroxisome sterol carrier protein thiolase; sterol carrier protein; oxopristanoyl-CoA thiolase; peroxisomal 3-oxoacyl coenzyme A thiolase; SCPx; 4,8,12-trimethyltridecanoyl-CoA:propanoyl-CoA 2-C-4,8,12-trimethyltridecanoyltransferase
Systematic name: 3α,7α,12α-trihydroxy-5β-cholanoyl-CoA:propanoyl-CoA C-acyltransferase
Comments: Also acts on dihydroxy-5β-cholestanoyl-CoA and other branched chain acyl-CoA derivatives. The enzyme catalyses the penultimate step in the formation of bile acids. The bile acid moiety is transferred from the acyl-CoA thioester (RCO-SCoA) to either glycine or taurine (NH2R′) by EC 2.3.1.65, bile acid-CoA:amino acid N-acyltransferase [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pedersen, J.I. and Gustafsson, J. Conversion of 3α,7α,12α-trihydroxy-5β-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Lett. 121 (1980) 345–348. [DOI] [PMID: 7461136]
2.  Kase, F., Björkhem, I. and Pedersen, J.I. Formation of cholic acid from 3α,7α,12α-trihydroxy-5β-cholestanoic acid by rat liver peroxisomes. J. Lipid Res. 24 (1983) 1560–1567. [PMID: 6668450]
3.  Falany, C.N., Johnson, M.R., Barnes, S. and Diasio, R.B. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J. Biol. Chem. 269 (1994) 19375–19379. [PMID: 8034703]
4.  Seedorf, U., Brysch, P., Engel, T., Schrage, K. and Assmann, G. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J. Biol. Chem. 269 (1994) 21277–21283. [PMID: 8063752]
5.  Wanders, R.J.A., Denis, S., Wouters, F., Wirtz, K.W.A. and Seedorf, U. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain β-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem. Biophys. Res. Commun. 236 (1997) 565–569. [DOI] [PMID: 9245689]
6.  Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72 (2003) 137–174. [DOI] [PMID: 12543708]
[EC 2.3.1.176 created 2005 (EC 2.3.1.154 created 2000, incorporated 2015)]
 
 
EC 2.3.3.15     
Accepted name: sulfoacetaldehyde acetyltransferase
Reaction: acetyl phosphate + sulfite = 2-sulfoacetaldehyde + phosphate
Glossary: 2-sulfoacetaldehyde = 2-oxoethanesulfonate
Other name(s): Xsc
Systematic name: acetyl-phosphate:sulfite S-acetyltransferase (acyl-phosphate hydrolysing, 2-oxoethyl-forming)
Comments: The reaction occurs in the reverse direction to that shown above. Requires Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56941-15-2
References:
1.  Ruff, J., Denger, K. and Cook, A.M. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem. J. 369 (2003) 275–285. [DOI] [PMID: 12358600]
[EC 2.3.3.15 created 2003]
 
 
EC 2.6.1.55     
Accepted name: taurine—2-oxoglutarate transaminase
Reaction: taurine + 2-oxoglutarate = 2-sulfoacetaldehyde + L-glutamate
Glossary: 2-sulfoacetaldehyde = 2-oxoethanesulfonate
taurine = 2-aminoethanesulfonate
Other name(s): taurine aminotransferase; taurine transaminase; taurine—α-ketoglutarate aminotransferase; taurine—glutamate transaminase
Systematic name: taurine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on D,L-3-amino-isobutanoate, β-alanine and 3-aminopropanesulfonate. Involved in the microbial utilization of β-alanine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-52-2
References:
1.  Toyama, S., Misono, H. and Soda, K. Crystalline taurine:α-ketoglutarate aminotransferase from Achromobacter superficialis. Biochem. Biophys. Res. Commun. 46 (1972) 1374–1379. [DOI] [PMID: 5012173]
2.  Cook, A.M. and Denger, K. Dissimilation of the C2 sulfonates. Arch. Microbiol. 179 (2002) 1–6. [DOI] [PMID: 12471498]
[EC 2.6.1.55 created 1976, modified 2003]
 
 
EC 2.6.1.77     
Accepted name: taurine—pyruvate aminotransferase
Reaction: taurine + pyruvate = L-alanine + 2-sulfoacetaldehyde
For diagram of reaction, click here
Glossary: taurine = 2-aminoethanesulfonate
hypotaurine = 2-aminoethanesulfinate
2-sulfoacetaldehyde = 2-oxoethanesulfonate
2-sulfinoacetaldehyde = 2-oxoethanesulfinate
Other name(s): Tpa
Systematic name: taurine:pyruvate aminotransferase
Comments: The enzyme from the bacterium Bilophila wadsworthia requires pyridoxal 5′-phosphate as a cofactor, and catalyses a reversible reaction that starts an anaerobic taurine degradation pathway. β-Alanine is also a significant amino group donor. The enzyme from the bacterium Pseudomonas denitrificans PD1222 can also use hypotaurine, producing 2-sulfinoacetaldehyde, which spontaneously hydrolyses to sulfite and acetaldehyde. Unlike, EC 2.6.1.55, taurine—2-oxoglutarate transaminase, 2-oxoglutarate cannot serve as an acceptor for the amino group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 51901-18-9
References:
1.  Laue, H. and Cook, A.M. Biochemical and molecular characterization of taurine:pyruvate transaminase from the anaerobe Bilophila wadsworthia. Eur. J. Biochem. 267 (2000) 6841–6848. [DOI] [PMID: 11082195]
2.  Cook, A.M. and Denger, K. Dissimilation of the C2 sulfonates. Arch. Microbiol. 179 (2002) 1–6. [DOI] [PMID: 12471498]
3.  Masepohl, B., Fuhrer, F. and Klipp, W. Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source. FEMS Microbiol. Lett. 205 (2001) 105–111. [DOI] [PMID: 11728723]
4.  Felux, A.K., Denger, K., Weiss, M., Cook, A.M. and Schleheck, D. Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth. J. Bacteriol. 195 (2013) 2921–2930. [DOI] [PMID: 23603744]
[EC 2.6.1.77 created 2003]
 
 
EC 3.5.1.24     
Accepted name: choloylglycine hydrolase
Reaction: glycocholate + H2O = cholate + glycine
For diagram of cholic acid conjugates biosynthesis, click here
Glossary: glycocholate = N-(3α,7α,12α-trihydroxy-5β-cholan-24-oyl)glycine
cholate = 3α,7α,12α-trihydroxy-5β-cholan-24-oate
Other name(s): glycocholase; bile salt hydrolase; choloyltaurine hydrolase; 3α,7α,12α-trihydroxy-5β-cholan-24-oylglycine amidohydrolase
Systematic name: glycocholate amidohydrolase
Comments: Also acts on the 3α,12α-dihydroxy-derivative, and on choloyl-taurine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-07-9
References:
1.  Nair, P.P., Gordon, M. and Reback, J. The enzymatic cleavage of the carbon-nitrogen bond in 3α,7α,12α-trihydroxy-5-β-cholan-24-oylglycine. J. Biol. Chem. 242 (1967) 7–11. [PMID: 6016335]
2.  Stellwag, E.J. and Hylemon, P.B. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim. Biophys. Acta 452 (1976) 165–176. [DOI] [PMID: 10993]
[EC 3.5.1.24 created 1972]
 
 
EC 3.5.1.74     
Accepted name: chenodeoxycholoyltaurine hydrolase
Reaction: chenodeoxycholoyltaurine + H2O = chenodeoxycholate + taurine
Glossary: chenodeoxycholate = 3α,7α-dihydroxy-5β-cholan-24-oate
Systematic name: chenodeoxycholoyltaurine amidohydrolase
Comments: Some other taurine conjugates are hydrolysed, but not glycine conjugates of bile acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 125752-75-2
References:
1.  Kawamoto, K., Horibe, I. and Uchida, K. Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus. J. Biochem. (Tokyo) 106 (1989) 1049–1053. [PMID: 2628421]
[EC 3.5.1.74 created 1992]
 
 
EC 3.6.3.36      
Transferred entry: taurine-transporting ATPase. Now EC 7.6.2.7, taurine-transporting ATPase
[EC 3.6.3.36 created 2000, deleted 2018]
 
 
EC 4.1.1.29     
Accepted name: sulfinoalanine decarboxylase
Reaction: 3-sulfino-L-alanine = hypotaurine + CO2
For diagram of taurine biosynthesis, click here
Other name(s): cysteine-sulfinate decarboxylase; L-cysteinesulfinic acid decarboxylase; cysteine-sulfinate decarboxylase; CADCase/CSADCase; CSAD; cysteic decarboxylase; cysteinesulfinic acid decarboxylase; cysteinesulfinate decarboxylase; sulfoalanine decarboxylase; 3-sulfino-L-alanine carboxy-lyase
Systematic name: 3-sulfino-L-alanine carboxy-lyase (hypotaurine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on L-cysteate. The 1992 edition of the Enzyme List erroneously gave the name sulfoalanine decarboxylase to this enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 62213-10-9
References:
1.  Guion-Rain, M.C., Portemer, C. and Chatagner, F. Rat liver cysteine sulfinate decarboxylase: purification, new appraisal of the molecular weight and determination of catalytic properties. Biochim. Biophys. Acta 384 (1975) 265–276. [DOI] [PMID: 236774]
2.  Jacobsen, J.G., Thomas, L.L. and Smith, L.H., Jr. Properties and distribution of mammalian L-cysteine sulfinate carboxy-lyases. Biochim. Biophys. Acta 85 (1964) 103–116. [PMID: 14159288]
[EC 4.1.1.29 created 1961, deleted 1972, reinstated 1976, modified 1983, modified 1999]
 
 
EC 4.4.1.10     
Accepted name: cysteine lyase
Reaction: L-cysteine + sulfite = L-cysteate + hydrogen sulfide
For diagram of taurine biosynthesis, click here
Other name(s): cysteine (sulfite) lyase; L-cysteine hydrogen-sulfide-lyase (adding sulfite)
Systematic name: L-cysteine hydrogen-sulfide-lyase (adding sulfite; L-cysteate-forming)
Comments: A pyridoxal-phosphate protein. Can use a second molecule of cysteine (producing lanthionine), or other alkyl thiols, as a replacing agent.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9079-86-1
References:
1.  Tolosa, E.A., Chepurnova, N.K., Khomutov, R.M. and Severin, E.S. Reactions catalysed by cysteine lyase from the yolk sac of chicken embryo. Biochim. Biophys. Acta 171 (1969) 369–371. [DOI] [PMID: 5813025]
[EC 4.4.1.10 created 1972]
 
 
EC 4.4.1.38     
Accepted name: isethionate sulfite-lyase
Reaction: isethionate = acetaldehyde + sulfite
Glossary: isethionate = 2-hydroxyethanesulfonate
Other name(s): islA (gene name)
Systematic name: isethionate sulfite-lyase
Comments: The enzyme, characterized from the human gut bacterium Bilophila wadsworthia, participates in a taurine degradation pathway that leads to sulfide production. The active form of the enzyme contains a glycyl radical that is generated by a dedicated activating enzyme via chemistry involving S-adenosyl-L-methionine (SAM) and a [4Fe-4S] cluster.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Peck, S.C., Denger, K., Burrichter, A., Irwin, S.M., Balskus, E.P. and Schleheck, D. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc. Natl. Acad. Sci. USA 116 (2019) 3171–3176. [DOI] [PMID: 30718429]
2.  Xing, M., Wei, Y., Zhou, Y., Zhang, J., Lin, L., Hu, Y., Hua, G.,, N. Nanjaraj Urs, A., Liu, D., Wang, F., Guo, C., Tong, Y., Li, M., Liu, Y., Ang, E.L., Zhao, H., Yuchi, Z. and Zhang, Y. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat. Commun. 10:1609 (2019). [DOI] [PMID: 30962433]
[EC 4.4.1.38 created 2021]
 
 
EC 7.6.2.7     
Accepted name: ABC-type taurine transporter
Reaction: ATP + H2O + taurine-[taurine-binding protein][side 1] = ADP + phosphate + taurine[side 2] + [taurine-binding protein][side 1]
Other name(s): tauABC (gene names); taurine ABC transporter; taurine-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, taurine-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. Does not undergo phosphorylation during the transport process. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of taurine. In Escherichia coli the enzyme imports a range of sulfonates (including taurine) that can be used as a source of sulfur.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Ploeg, J.R., Weiss, M.A., Saller, E., Nashimoto, H., Saito, N., Kertesz, M.A. and Leisinger, T. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J. Bacteriol. 178 (1996) 5438–5446. [DOI] [PMID: 8808933]
[EC 7.6.2.7 created 2000 as EC 3.6.3.36, transferred 2018 to EC 7.6.2.7]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald