The Enzyme Database

Your query returned 31 entries.    printer_iconPrintable version

EC 1.1.1.257     
Accepted name: 4-(hydroxymethyl)benzenesulfonate dehydrogenase
Reaction: 4-(hydroxymethyl)benzenesulfonate + NAD+ = 4-formylbenzenesulfonate + NADH + H+
Systematic name: 4-(hydroxymethyl)benzenesulfonate:NAD+ oxidoreductase
Comments: Involved in the toluene-4-sulfonate degradation pathway in Comamonas testosteroni.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 167973-64-0
References:
1.  Junker, F., Saller, E., Schläfli Oppenberg, H.R., Kroneck, P.M., Leisinger, T. and Cook, A.M. Degradative pathways for p-toluenecarboxylate and p-toluenesulfonate and their multicomponent oxygenases in Comamonas testosteroni strains PSB-4 and T-2. Microbiology 142 (1996) 2419–2427. [DOI] [PMID: 8828208]
[EC 1.1.1.257 created 2000]
 
 
EC 1.1.1.429     
Accepted name: (2S)-[(R)-hydroxy(phenyl)methyl]succinyl-CoA dehydrogenase
Reaction: (2S)-[(R)-hydroxy(phenyl)methyl]succinyl-CoA + NAD+ = (S)-2-benzoylsuccinyl-CoA + NADH + H+
Other name(s): bbsCD (gene name)
Systematic name: (2S)-[(R)-hydroxy(phenyl)methyl]succinyl-CoA:NAD+ oxidoreductase
Comments: The enzyme, purified from the bacterium Thauera aromatica, is involved in an anaerobic toluene degradation pathway. It is specific for NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  von Horsten, S., Lippert, M.L., Geisselbrecht, Y., Schuhle, K., Schall, I., Essen, L.O. and Heider, J. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. FEBS J. (2021) . [DOI] [PMID: 34601806]
[EC 1.1.1.429 created 2022]
 
 
EC 1.2.1.62     
Accepted name: 4-formylbenzenesulfonate dehydrogenase
Reaction: 4-formylbenzenesulfonate + NAD+ + H2O = 4-sulfobenzoate + NADH + 2 H+
Systematic name: 4-formylbenzenesulfonate:NAD+ oxidoreductase
Comments: Involved in the toluene-4-sulfonate degradation pathway.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 167973-68-4
References:
1.  Junker, F., Saller, E., Schläfli Oppenberg, H.R., Kroneck, P.M., Leisinger, T. and Cook, A.M. Degradative pathways for p-toluenecarboxylate and p-toluenesulfonate and their multicomponent oxygenases in Comamonas testosteroni strains PSB-4 and T-2. Microbiology 142 (1996) 2419–2427. [DOI] [PMID: 8828208]
2.  Junker, F., Kiewitz, R. and Cook, A.M. Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J. Bacteriol. 179 (1997) 919–927. [DOI] [PMID: 9006050]
[EC 1.2.1.62 created 2000]
 
 
EC 1.2.1.64     
Accepted name: 4-hydroxybenzaldehyde dehydrogenase (NAD+)
Reaction: 4-hydroxybenzaldehyde + NAD+ + H2O = 4-hydroxybenzoate + NADH + 2 H+
Other name(s): p-hydroxybenzaldehyde dehydrogenase (ambiguous); 4-hydroxybenzaldehyde dehydrogenase (ambiguous)
Systematic name: 4-hydroxybenzaldehyde:NAD+ oxidoreductase
Comments: The bacterial enzyme (characterized from an unidentified denitrifying bacterium) is involved in an anaerobic toluene degradation pathway. The plant enzyme is involved in formation of 4-hydroxybenzoate, a cell wall-bound phenolic acid that plays a major role in plant defense against pathogens. cf. EC 1.2.1.96, 4-hydroxybenzaldehyde dehydrogenase (NADP+).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 61229-72-9
References:
1.  Bossert, I.D., Whited, G., Gibson, D.T. and Young, L.Y. Anaerobic oxidation of p-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium. J. Bacteriol. 171 (1989) 2956–2962. [DOI] [PMID: 2722739]
2.  Sircar, D. and Mitra, A. Evidence for p-hydroxybenzoate formation involving enzymatic phenylpropanoid side-chain cleavage in hairy roots of Daucus carota. J. Plant Physiol. 165 (2008) 407–414. [DOI] [PMID: 17658659]
[EC 1.2.1.64 created 2000, modified 2015]
 
 
EC 1.2.1.96     
Accepted name: 4-hydroxybenzaldehyde dehydrogenase (NADP+)
Reaction: 4-hydroxybenzaldehyde + NADP+ + H2O = 4-hydroxybenzoate + NADPH + 2 H+
Other name(s): p-hydroxybenzaldehyde dehydrogenase (ambiguous); pchA (gene name)
Systematic name: 4-hydroxybenzaldehyde:NADP+ oxidoreductase
Comments: Involved in the aerobic pathway for degradation of toluene, 4-methylphenol, and 2,4-xylenol by several Pseudomonas strains. The enzyme is also active with 4-hydroxy-3-methylbenzaldehyde. cf. EC 1.2.1.64, 4-hydroxybenzaldehyde dehydrogenase (NAD+).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 61229-72-9
References:
1.  Whited, G.M. and Gibson, D.T. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1. J. Bacteriol. 173 (1991) 3017–3020. [DOI] [PMID: 2019564]
2.  Chen, Y.F., Chao, H. and Zhou, N.Y. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Appl. Microbiol. Biotechnol. 98 (2014) 1349–1356. [DOI] [PMID: 23736872]
[EC 1.2.1.96 created 2015]
 
 
EC 1.3.1.119     
Accepted name: chlorobenzene dihydrodiol dehydrogenase
Reaction: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol + NAD+ = 3-chlorocatechol + NADH + H+
Other name(s): tecB (gene name)
Systematic name: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol:NAD+ oxidoreductase
Comments: This bacterial enzyme can transform various dihydrodiols of chlorobenzenes into the respective catechols, including the dihydrodiols of mono-, di-, tri-, and tetra-chlorinated benzenes. It also accepts the dihydrodiols of various chlorotoluenes. Substrates for the enzyme are generated by the broad spectrum EC 1.14.12.26, chlorobenzene dioxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Spiess, E. and Gorisch, H. Purification and characterization of chlorobenzene cis-dihydrodiol dehydrogenase from Xanthobacter flavus 14p1. Arch. Microbiol. 165 (1996) 201–205. [PMID: 8599538]
2.  Pollmann, K., Beil, S. and Pieper, D.H. Transformation of chlorinated benzenes and toluenes by Ralstonia sp. strain PS12 tecA (tetrachlorobenzene dioxygenase) and tecB (chlorobenzene dihydrodiol dehydrogenase) gene products. Appl. Environ. Microbiol. 67 (2001) 4057–4063. [PMID: 11526005]
3.  Pollmann, K., Wray, V. and Pieper, D.H. Chloromethylmuconolactones as critical metabolites in the degradation of chloromethylcatechols: recalcitrance of 2-chlorotoluene. J. Bacteriol. 187 (2005) 2332–2340. [PMID: 15774876]
[EC 1.3.1.119 created 2018]
 
 
EC 1.3.8.3     
Accepted name: (R)-benzylsuccinyl-CoA dehydrogenase
Reaction: (R)-2-benzylsuccinyl-CoA + electron-transfer flavoprotein = (E)-2-benzylidenesuccinyl-CoA + reduced electron-transfer flavoprotein
For diagram of anaerobic toluene catabolism, click here
Other name(s): BbsG; (R)-benzylsuccinyl-CoA:(acceptor) oxidoreductase
Systematic name: (R)-benzylsuccinyl-CoA:electron transfer flavoprotein oxidoreductase
Comments: Contains a tightly-bound FAD cofactor. Unlike other acyl-CoA dehydrogenases, this enzyme exhibits high substrate- and enantiomer specificity; it is highly specific for (R)-benzylsuccinyl-CoA and is inhibited by (S)-benzylsuccinyl-CoA. Forms the third step in the anaerobic toluene metabolic pathway in Thauera aromatica. Ferricenium ion is an effective artificial electron acceptor.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Leutwein, C. and Heider, J. Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and β-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiology 145 (1999) 3265–3271. [DOI] [PMID: 10589736]
2.  Leutwein, C. and Heider, J. (R)-Benzylsuccinyl-CoA dehydrogenase of Thauera aromatica, an enzyme of the anaerobic toluene catabolic pathway. Arch. Microbiol. 178 (2002) 517–524. [DOI] [PMID: 12420174]
[EC 1.3.8.3 created 2003 as EC 1.3.99.21, transferred 2012 to EC 1.3.8.3]
 
 
EC 1.3.99.21      
Transferred entry: (R)-benzylsuccinyl-CoA dehydrogenase. Now EC 1.3.8.3, (R)-benzylsuccinyl-CoA dehydrogenase
[EC 1.3.99.21 created 2003 as EC 1.3.99.21, deleted 2012]
 
 
EC 1.11.1.10     
Accepted name: chloride peroxidase
Reaction: RH + chloride + H2O2 = RCl + 2 H2O
Other name(s): chloroperoxidase; CPO; vanadium haloperoxidase
Systematic name: chloride:hydrogen-peroxide oxidoreductase
Comments: Brings about the chlorination of a range of organic molecules, forming stable C-Cl bonds. Also oxidizes bromide and iodide. Enzymes of this type are either heme-thiolate proteins, or contain vanadate. A secreted enzyme produced by the ascomycetous fungus Caldariomyces fumago (Leptoxyphium fumago) is an example of the heme-thiolate type. It catalyses the production of hypochlorous acid by transferring one oxygen atom from H2O2 to chloride. At a separate site it catalyses the chlorination of activated aliphatic and aromatic substrates, via HClO and derived chlorine species. In the absence of halides, it shows peroxidase (e.g. phenol oxidation) and peroxygenase activities. The latter inserts oxygen from H2O2 into, for example, styrene (side chain epoxidation) and toluene (benzylic hydroxylation), however, these activities are less pronounced than its activity with halides. Has little activity with non-activated substrates such as aromatic rings, ethers or saturated alkanes. The chlorinating peroxidase produced by ascomycetous fungi (e.g. Curvularia inaequalis) is an example of a vanadium chloroperoxidase, and is related to bromide peroxidase (EC 1.11.1.18). It contains vanadate and oxidizes chloride, bromide and iodide into hypohalous acids. In the absence of halides, it peroxygenates organic sulfides and oxidizes ABTS [2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)] but no phenols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9055-20-3
References:
1.  Morris, D.R. and Hager, L.P. Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J. Biol. Chem. 241 (1966) 1763–1768. [PMID: 5949836]
2.  Hager, L.P., Hollenberg, P.F., Rand-Meir, T., Chiang, R. and Doubek, D.L. Chemistry of peroxidase intermediates. Ann. N.Y. Acad. Sci. 244 (1975) 80–93. [DOI] [PMID: 1056179]
3.  Theiler, R., Cook, J.C., Hager, L.P. and Siuda, J.F. Halohydrocarbon synthesis by bromoperoxidase. Science 202 (1978) 1094–1096. [DOI] [PMID: 17777960]
4.  Sundaramoorthy, M., Terner, J. and Poulos, T.L. The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid. Structure 3 (1995) 1367–1377. [DOI] [PMID: 8747463]
5.  ten Brink, H.B., Tuynman, A., Dekker, H.L., Hemrika, W., Izumi, Y., Oshiro, T., Schoemaker, H.E. and Wever, R. Enantioselective sulfoxidation catalyzed by vanadium haloperoxidases. Inorg. Chem. 37 (1998) 6780–6784. [DOI] [PMID: 11670813]
6.  ten Brink, H.B., Dekker, H.L., Schoemaker, H.E. and Wever, R. Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis. J. Inorg. Biochem. 80 (2000) 91–98. [DOI] [PMID: 10885468]
7.  Manoj, K.M. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochim. Biophys. Acta 1764 (2006) 1325–1339. [DOI] [PMID: 16870515]
8.  Kuhnel, K., Blankenfeldt, W., Terner, J. and Schlichting, I. Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate. J. Biol. Chem. 281 (2006) 23990–23998. [DOI] [PMID: 16790441]
9.  Manoj, K.M. and Hager, L.P. Chloroperoxidase, a janus enzyme. Biochemistry 47 (2008) 2997–3003. [DOI] [PMID: 18220360]
[EC 1.11.1.10 created 1972, modified 2011]
 
 
EC 1.11.2.1     
Accepted name: unspecific peroxygenase
Reaction: RH + H2O2 = ROH + H2O
Other name(s): aromatic peroxygenase; mushroom peroxygenase; haloperoxidase-peroxygenase; Agrocybe aegerita peroxidase
Systematic name: substrate:hydrogen-peroxide oxidoreductase (RH-hydroxylating or -epoxidising)
Comments: A heme-thiolate protein (P-450). Enzymes of this type include glycoproteins secreted by agaric basidiomycetes. They catalyse the insertion of an oxygen atom from H2O2 into a wide variety of substrates, including aromatic rings such as naphthalene, toluene, phenanthrene, pyrene and p-nitrophenol, recalcitrant heterocycles such as pyridine, dibenzofuran, various ethers (resulting in O-dealkylation) and alkanes such as propane, hexane and cyclohexane. Reactions catalysed include hydroxylation, epoxidation, N-oxidation, sulfooxidation, O- and N-dealkylation, bromination and one-electron oxidations. They have little or no activity toward chloride. Mechanistically, the catalytic cycle of unspecific (mono)-peroxygenases combines elements of the "shunt" pathway of cytochrome P-450s (a side activity that utilizes a peroxide in place of dioxygen and NAD[P]H) and the classic heme peroxidase cycle.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ullrich, R., Nuske, J., Scheibner, K., Spantzel, J. and Hofrichter, M. Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol. 70 (2004) 4575–4581. [DOI] [PMID: 15294788]
2.  Ullrich, R. and Hofrichter, M. The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett. 579 (2005) 6247–6250. [DOI] [PMID: 16253244]
3.  Anh, D.H., Ullrich, R., Benndorf, D., Svatos, A., Muck, A. and Hofrichter, M. The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl. Environ. Microbiol. 73 (2007) 5477–5485. [DOI] [PMID: 17601809]
4.  Ullrich, R., Dolge, C., Kluge, M. and Hofrichter, M. Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett. 582 (2008) 4100–4106. [DOI] [PMID: 19022254]
5.  Aranda, E., Kinne, M., Kluge, M., Ullrich, R. and Hofrichter, M. Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl. Microbiol. Biotechnol. 82 (2009) 1057–1066. [DOI] [PMID: 19039585]
6.  Kinne, M., Poraj-Kobielska, M., Aranda, E., Ullrich, R., Hammel, K.E., Scheibner, K. and Hofrichter, M. Regioselective preparation of 5-hydroxypropranolol and 4′-hydroxydiclofenac with a fungal peroxygenase. Bioorg. Med. Chem. Lett. 19 (2009) 3085–3087. [DOI] [PMID: 19394224]
7.  Kluge, M., Ullrich, R., Dolge, C., Scheibner, K. and Hofrichter, M. Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl. Microbiol. Biotechnol. 81 (2009) 1071–1076. [DOI] [PMID: 18815784]
8.  Kinne, M., Poraj-Kobielska, M., Ralph, S.A., Ullrich, R., Hofrichter, M. and Hammel, K.E. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J. Biol. Chem. 284 (2009) 29343–29349. [DOI] [PMID: 19713216]
9.  Pecyna, M.J., Ullrich, R., Bittner, B., Clemens, A., Scheibner, K., Schubert, R. and Hofrichter, M. Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl. Microbiol. Biotechnol. 84 (2009) 885–897. [DOI] [PMID: 19434406]
[EC 1.11.2.1 created 2011]
 
 
EC 1.13.11.2     
Accepted name: catechol 2,3-dioxygenase
Reaction: catechol + O2 = 2-hydroxymuconate-6-semialdehyde
For diagram of catechol catabolism (meta ring cleavage), click here
Glossary: 2-hydroxymuconate-6-semialdehyde = (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate
Other name(s): 2,3-pyrocatechase; catechol 2,3-oxygenase; catechol oxygenase; metapyrocatechase; pyrocatechol 2,3-dioxygenase; xylE (gene name); catechol:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: catechol:oxygen 2,3-oxidoreductase (ring-opening)
Comments: Requires FeII. The enzyme initiates the meta-cleavage pathway of catechol degradation.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-46-3
References:
1.  Hayaishi, O. Direct oxygenation by O2, oxygenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 353–371.
2.  Kojima, Y., Itada, N. and Hayaishi, O. Metapyrocatechase: a new catechol-cleaving enzyme. J. Biol. Chem. 236 (1961) 2223–2228. [PMID: 13757654]
3.  Nozaki, M., Kagamiyama, H. and Hayaishi, O. Metapyrocatechase. I. Purification, crystallization and some properties. Biochem. Z. 338 (1963) 582–590. [PMID: 14087325]
4.  Nakai, C., Hori, K., Kagamiyama, H., Nakazawa, T. and Nozaki, M. Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J. Biol. Chem. 258 (1983) 2916–2922. [PMID: 6826545]
5.  Junker, F., Field, J.A., Bangerter, F., Ramsteiner, K., Kohler, H.-P., Joannou, C.L., Mason, J.R., Leisinger, T. and Cook, A.M. Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem. J. 300 (1994) 429–436. [PMID: 8002948]
6.  Junker, F., Leisinger, T. and Cook, A.M. 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140 (1994) 1713–1722. [DOI] [PMID: 8075807]
[EC 1.13.11.2 created 1965 as EC 1.13.1.2, transferred 1972 to EC 1.13.11.2, modified 1999, modified 2013]
 
 
EC 1.14.12.11     
Accepted name: toluene dioxygenase
Reaction: toluene + NADH + H+ + O2 = (1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
For diagram of reaction, click here
Other name(s): toluene 2,3-dioxygenase
Systematic name: toluene,NADH:oxygen oxidoreductase (1,2-hydroxylating)
Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FAD), an iron-sulfur oxygenase, and a ferredoxin. Some other aromatic compounds, including ethylbenzene, 4-xylene and some halogenated toluenes, are converted into the corresponding cis-dihydrodiols.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 120038-36-0
References:
1.  Renganathan, V. Possible involvement of toluene-2,3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. strain T-12. Appl. Exp. Microbiol. 55 (1989) 330–334. [PMID: 16347845]
2.  Subramanian, V., Liu, T.-N., Yeh, W.K. and Gibson, D.T. Toluene dioxygenase: purification of an iron-sulfur protein by affinity chromatography. Biochem. Biophys. Res. Commun. 91 (1979) 1131–1139. [DOI] [PMID: 526270]
[EC 1.14.12.11 created 1992]
 
 
EC 1.14.12.14     
Accepted name: 2-aminobenzenesulfonate 2,3-dioxygenase
Reaction: 2-aminobenzenesulfonate + NADH + H+ + O2 = 2,3-dihydroxybenzenesulfonate + NH3 + NAD+
For diagram of reaction, click here
Other name(s): 2-aminosulfobenzene 2,3-dioxygenase
Systematic name: 2-aminobenzenesulfonate,NADH:oxygen oxidoreductase (2,3-hydroxylating, ammonia-forming)
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 156621-16-8
References:
1.  Junker, F., Field, J.A., Bangerter, F., Ramsteiner, K., Kohler, H.-P., Joannou, C.L., Mason, J.R., Leisinger, T. and Cook, A.M. Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem. J. 300 (1994) 429–436. [PMID: 8002948]
2.  Junker, F., Leisinger, T. and Cook, A.M. 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140 (1994) 1713–1722. [DOI] [PMID: 8075807]
[EC 1.14.12.14 created 1999]
 
 
EC 1.14.12.18     
Accepted name: biphenyl 2,3-dioxygenase
Reaction: biphenyl + NADH + H+ + O2 = (1S,2R)-3-phenylcyclohexa-3,5-diene-1,2-diol + NAD+
For diagram of reaction, click here
Other name(s): biphenyl dioxygenase
Systematic name: biphenyl,NADH:oxygen oxidoreductase (2,3-hydroxylating)
Comments: Requires Fe2+. The enzyme from Burkholderia fungorum LB400 (previously Pseudomonas sp.) is part of a multicomponent system composed of an NADH:ferredoxin oxidoreductase (FAD cofactor), a [2Fe-2S] Rieske-type ferredoxin, and a terminal oxygenase that contains a [2Fe-2S] Rieske-type iron-sulfur cluster and a catalytic mononuclear nonheme iron centre. Chlorine-substituted biphenyls can also act as substrates. Similar to the three-component enzyme systems EC 1.14.12.3 (benzene 1,2-dioxygenase) and EC 1.14.12.11 (toluene dioxygenase).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 103289-55-0
References:
1.  Haddock, J.D. and Gibson, D.T. Purification and characterization of the oxygenase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. J. Bacteriol. 177 (1995) 5834–5839. [DOI] [PMID: 7592331]
2.  Haddock, J.D., Pelletier, D.A. and Gibson, D.T. Purification and properties of ferredoxinBPH, a component of biphenyl 2,3-dioxygenase of Pseudomonas sp. strain LB400. J. Indust. Microbiol. Biotechnol. 19 (1997) 355–359. [PMID: 9451832]
3.  Broadus, R.M. and Haddock, J.D. Purification and characterization of the NADH:ferredoxinBPH oxidoreductase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. Arch. Microbiol. 170 (1998) 106–112. [PMID: 9683647]
[EC 1.14.12.18 created 2001]
 
 
EC 1.14.12.23     
Accepted name: nitroarene dioxygenase
Reaction: nitrobenzene + NADH + O2 = catechol + nitrite + NAD+
For diagram of catechol biosynthesis, click here
Other name(s): cnbA (gene name)
Systematic name: nitrobenzene,NADH:oxygen oxidoreductase (1,2-hydroxylating, nitrite-releasing)
Comments: This enzyme is a member of the naphthalene family of bacterial Rieske non-heme iron dioxygenases. It comprises a multicomponent system, containing a Rieske [2Fe-2S] ferredoxin, an NADH-dependent flavoprotein reductase (EC 1.18.1.3, ferredoxin—NAD+ reductase), and an α3β3 oxygenase. The enzyme forms of a cis-dihydroxylated product that spontaneously rearranges to form a catechol with accompanying release of nitrite. It can typically act on many different nitroaromatic compounds, including chlorinated species. Enzymes found in different strains may have different substrate preferences. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Parales, J.V., Parales, R.E., Resnick, S.M. and Gibson, D.T. Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the α subunit of the oxygenase component. J. Bacteriol. 180 (1998) 1194–1199. [PMID: 9495758]
2.  Lessner, D.J., Johnson, G.R., Parales, R.E., Spain, J.C. and Gibson, D.T. Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl. Environ. Microbiol. 68 (2002) 634–641. [DOI] [PMID: 11823201]
3.  Liu, H., Wang, S.J., Zhang, J.J., Dai, H., Tang, H. and Zhou, N.Y. Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. Appl. Environ. Microbiol. 77 (2011) 4547–4552. [DOI] [PMID: 21602392]
4.  Singh, D., Kumari, A., Ramaswamy, S. and Ramanathan, G. Expression, purification and substrate specificities of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2. Biochem. Biophys. Res. Commun. 445 (2014) 36–42. [DOI] [PMID: 24491551]
[EC 1.14.12.23 created 2015]
 
 
EC 1.14.12.24     
Accepted name: 2,4-dinitrotoluene dioxygenase
Reaction: 2,4-dinitrotoluene + NADH + O2 = 4-methyl-5-nitrocatechol + nitrite + NAD+
Other name(s): dntA (gene name)
Systematic name: 2,4-dinitrotoluene,NADH:oxygen oxidoreductase (4,5-hydroxylating, nitrite-releasing)
Comments: This enzyme, characterized from the bacterium Burkholderia sp. strain DNT, is a member of the naphthalene family of bacterial Rieske non-heme iron dioxygenases. It comprises a multicomponent system, containing a Rieske [2Fe-2S] ferredoxin, an NADH-dependent flavoprotein reductase (EC 1.18.1.3, ferredoxin—NAD+ reductase), and an α3β3 oxygenase. The enzyme forms a cis-dihydroxylated product that spontaneously rearranges to form a catechol with accompanying release of nitrite. It does not act on nitrobenzene. cf. EC 1.14.12.23, nitroarene dioxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Suen, W.C., Haigler, B.E. and Spain, J.C. 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J. Bacteriol. 178 (1996) 4926–4934. [DOI] [PMID: 8759857]
[EC 1.14.12.24 created 2015]
 
 
EC 1.14.12.26     
Accepted name: chlorobenzene dioxygenase
Reaction: chlorobenzene + NADH + H+ + O2 = (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol + NAD+
For diagram of chlorobenzene catabolism, click here and for diagram of EC 1.14.12, click here
Other name(s): TecA
Systematic name: chlorobenzene,NADH:oxygen oxidoreductase (1,2-hydroxylating)
Comments: This bacterial enzyme is a class IIB dioxygenase, comprising three components - a heterodimeric terminal dioxygenase, a ferredoxin protein, and a ferredoxin reductase. The enzyme acts on a range of aromatic compounds, including mono-, di-, tri-, and tetra-chlorinated benzenes and toluenes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Spiess, E., Sommer, C. and Gorisch, H. Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1. Appl. Environ. Microbiol. 61 (1995) 3884–3888. [PMID: 8526500]
2.  Sommer, C. and Gorisch, H. Enzymology of the degradation of (di)chlorobenzenes by Xanthobacter flavus 14p1. Arch. Microbiol. 167 (1997) 384–391. [PMID: 9148781]
3.  Beil, S., Happe, B., Timmis, K.N. and Pieper, D.H. Genetic and biochemical characterization of the broad spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12 - dechlorination of 1,2,4,5-tetrachlorobenzene. Eur. J. Biochem. 247 (1997) 190–199. [PMID: 9249026]
4.  Beil, S., Mason, J.R., Timmis, K.N. and Pieper, D.H. Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J. Bacteriol. 180 (1998) 5520–5528. [PMID: 9791099]
[EC 1.14.12.26 created 2018]
 
 
EC 1.14.13.6     
Accepted name: orcinol 2-monooxygenase
Reaction: orcinol + NADH + H+ + O2 = 2,3,5-trihydroxytoluene + NAD+ + H2O
Other name(s): orcinol hydroxylase
Systematic name: orcinol,NADH:oxygen oxidoreductase (2-hydroxylating)
Comments: A flavoprotein (FAD).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 37217-34-8
References:
1.  Otha, Y. and Ribbons, D.W. Crystallization of orchinol hydroxylase from Pseudomonas putida. FEBS Lett. 11 (1970) 189–192. [DOI] [PMID: 11945483]
[EC 1.14.13.6 created 1972]
 
 
EC 1.14.13.69     
Accepted name: alkene monooxygenase
Reaction: propene + NADH + H+ + O2 = 1,2-epoxypropane + NAD+ + H2O
For diagram of epoxide carboxylation, click here and for diagram of isoprene biosynthesis and metabolism, click here
Other name(s): alkene epoxygenase; etnABCD (gene names); amoABCDE (gene names)
Systematic name: alkene,NADH:oxygen oxidoreductase
Comments: This bacterial binuclear non-heme iron enzyme is a multicomponent enzyme complex comprising an oxygenase, a reductase, and a Rieske-type ferredoxin. The enzyme from the bacterium Xanthobacter sp. strain Py2 contains an additional small protein of unknown function that is essential for activity. In general, the enzyme oxygenates C2 to C6 aliphatic alkenes, although enzymes from different organisms show different substrate range. With propene as substrate, the stereospecificity of the epoxypropane formed is 95% (R) and 5% (S).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 63439-50-9
References:
1.  Small, F.J. and Ensign, S.A. Alkene monooxygenase from Xanthobacter strain Py2: purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes. J. Biol. Chem. 272 (1997) 24913–24920. [DOI] [PMID: 9312093]
2.  Gallagher, S.C., Cammack, R. and Dalton, H. Alkene monooxygenase from Nocardia corallina B-276 is a member of the class of dinuclear iron proteins capable of stereospecific epoxygenation reactions. Eur. J. Biochem. 247 (1997) 635–641. [DOI] [PMID: 9266707]
3.  Zhou, N.Y., Jenkins, A., Chion, C.K.N.C.K. and Leak, D.J. The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Appl. Environ. Microbiol. 65 (1999) 1589–1595. [PMID: 10103255]
4.  Champreda, V., Zhou, N.Y. and Leak, D.J. Heterologous expression of alkene monooxygenase components from Xanthobacter autotrophicus Py2 and reconstitution of the active complex. FEMS Microbiol. Lett. 239 (2004) 309–318. [DOI] [PMID: 15476981]
5.  Champreda, V., Choi, Y.J., Zhou, N.Y. and Leak, D.J. Alteration of the stereo- and regioselectivity of alkene monooxygenase based on coupling protein interactions. Appl. Microbiol. Biotechnol. 71 (2006) 840–847. [DOI] [PMID: 16402171]
[EC 1.14.13.69 created 2001]
 
 
EC 1.14.13.236     
Accepted name: toluene 4-monooxygenase
Reaction: toluene + NADH + H+ + O2 = 4-methylphenol + NAD+ + H2O
Glossary: 4-methylphenol = p-cresol
Other name(s): TMO
Systematic name: toluene,NADH:oxygen oxidoreductase (4-hydroxylating)
Comments: This bacterial enzyme belongs to a family of soluble diiron hydroxylases that includes toluene-, benzene-, xylene- and methane monooxygenases, phenol hydroxylases, and alkene epoxidases. The enzyme comprises a four-component complex that includes a hydroxylase, NADH-ferredoxin oxidoreductase, a Rieske-type [2Fe-2S] ferredoxin, and an effector protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Whited, G.M. and Gibson, D.T. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173 (1991) 3010–3016. [DOI] [PMID: 2019563]
2.  Hemmi, H., Studts, J.M., Chae, Y.K., Song, J., Markley, J.L. and Fox, B.G. Solution structure of the toluene 4-monooxygenase effector protein (T4moD). Biochemistry 40 (2001) 3512–3524. [DOI] [PMID: 11297417]
3.  Schwartz, J.K., Wei, P.P., Mitchell, K.H., Fox, B.G. and Solomon, E.I. Geometric and electronic structure studies of the binuclear nonheme ferrous active site of toluene-4-monooxygenase: parallels with methane monooxygenase and insight into the role of the effector proteins in O2 activation. J. Am. Chem. Soc. 130 (2008) 7098–7109. [DOI] [PMID: 18479085]
4.  Bailey, L.J., Acheson, J.F., McCoy, J.G., Elsen, N.L., Phillips, G.N., Jr. and Fox, B.G. Crystallographic analysis of active site contributions to regiospecificity in the diiron enzyme toluene 4-monooxygenase. Biochemistry 51 (2012) 1101–1113. [DOI] [PMID: 22264099]
5.  Hosseini, A., Brouk, M., Lucas, M.F., Glaser, F., Fishman, A. and Guallar, V. Atomic picture of ligand migration in toluene 4-monooxygenase. J. Phys. Chem. B 119 (2015) 671–678. [DOI] [PMID: 24798294]
[EC 1.14.13.236 created 2017]
 
 
EC 1.14.13.243     
Accepted name: toluene 2-monooxygenase
Reaction: (1) toluene + NADH + H+ + O2 = 2-methylphenol + NAD+ + H2O
(2) 2-methylphenol + NADH + H+ + O2 = 3-methylcatechol + NAD+ + H2O
Other name(s): tomA1/2/3/4/5 (gene names); toluene ortho-monooxygenase
Systematic name: toluene,NADH:oxygen oxidoreductase (2,3-dihydroxylating)
Comments: The enzyme, characterized from the bacterium Burkholderia cepacia, belongs to a class of nonheme, oxygen-dependent diiron enzymes. It contains a hydroxylase component with two binuclear iron centers, an NADH-oxidoreductase component containing FAD and a [2Fe-2S] iron-sulfur cluster, and a third component involved in electron transfer between the hydroxylase and the reductase. The enzyme dihydroxylates its substrate in two sequential hydroxylations, initially forming 2-methylphenol, which is hydroxylated to 3-methylcatechol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Newman, L.M. and Wackett, L.P. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34 (1995) 14066–14076. [PMID: 7578004]
2.  Yeager, C.M., Bottomley, P.J., Arp, D.J. and Hyman, M.R. Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Appl. Environ. Microbiol. 65 (1999) 632–639. [PMID: 9925593]
3.  Canada, K.A., Iwashita, S., Shim, H. and Wood, T.K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J. Bacteriol. 184 (2002) 344–349. [PMID: 11751810]
[EC 1.14.13.243 created 2019]
 
 
EC 1.14.15.25     
Accepted name: p-cymene methyl-monooxygenase
Reaction: p-cymene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = 4-isopropylbenzyl alcohol + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
Glossary: p-cymene = 4-methyl-1-(propan-2-yl)benzene
Other name(s): cymAa (gene name); cymA (gene name); p-cymene methyl hydroxylase
Systematic name: p-cymene,ferredoxin:oxygen oxidoreductase (methyl-hydroxylating)
Comments: The enzyme, characterized from several Pseudomonas strains, initiates p-cymene catabolism through hydroxylation of the methyl group. The enzyme has a distinct preference for substrates containing at least an alkyl or heteroatom substituent at the para-position of toluene. The electrons are provided by a reductase (EC 1.18.1.3, ferredoxin—NAD+ reductase) that transfers electrons from NADH via FAD and an [2Fe-2S] cluster. In Pseudomonas chlororaphis the presence of a third component of unknown function greatly increases the activity. cf. EC 1.14.15.26, toluene methyl-monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Eaton, R.W. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J. Bacteriol. 179 (1997) 3171–3180. [DOI] [PMID: 9150211]
2.  Dutta, T.K. and Gunsalus, I.C. Reductase gene sequences and protein structures: p-cymene methyl hydroxylase. Biochem. Biophys. Res. Commun. 233 (1997) 502–506. [DOI] [PMID: 9144566]
3.  Nishio, T., Patel, A., Wang, Y. and Lau, P.C. Biotransformations catalyzed by cloned p-cymene monooxygenase from Pseudomonas putida F1. Appl. Microbiol. Biotechnol. 55 (2001) 321–325. [PMID: 11341314]
4.  Dutta, T.K., Chakraborty, J., Roy, M., Ghosal, D., Khara, P. and Gunsalus, I.C. Cloning and characterization of a p-cymene monooxygenase from Pseudomonas chlororaphis subsp. aureofaciens. Res. Microbiol. 161 (2010) 876–882. [DOI] [PMID: 21035544]
[EC 1.14.15.25 created 2018]
 
 
EC 1.14.15.26     
Accepted name: toluene methyl-monooxygenase
Reaction: (1) toluene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = benzyl alcohol + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(2) p-xylene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = 4-methylbenzyl alcohol + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(3) m-xylene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = 3-methylbenzyl alcohol + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
Glossary: toluene = methylbenzene
p-xylene = 1,4-dimethylbenzene
m-xylene = 1,3-dimethylbenzene
Other name(s): xylM (gene names); ntnM (gene names)
Systematic name: methylbenzene,ferredoxin:oxygen oxidoreductase (methyl-hydroxylating)
Comments: The enzyme, characterized from several Pseudomonas strains, catalyses the first step in the degradation of toluenes and xylenes. It has a broad substrate specificity and is also active with substituted compounds, such as chlorotoluenes. The electrons are provided by a reductase (EC 1.18.1.3, ferredoxin—NAD+ reductase) that transfers electrons from NADH via FAD and an [2Fe-2S] cluster. The enzyme can also act on its products, producing gem-diols that spontaneously dehydrate to form aldehydes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Suzuki, M., Hayakawa, T., Shaw, J.P., Rekik, M. and Harayama, S. Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173 (1991) 1690–1695. [DOI] [PMID: 1999388]
2.  Shaw, J.P. and Harayama, S. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Eur. J. Biochem. 209 (1992) 51–61. [DOI] [PMID: 1327782]
3.  Brinkmann, U. and Reineke, W. Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of meta-pathway. FEMS Microbiol. Lett. 75 (1992) 81–87. [PMID: 1526468]
4.  James, K.D. and Williams, P.A. ntn genes determining the early steps in the divergent catabolism of 4-nitrotoluene and toluene in Pseudomonas sp. strain TW3. J. Bacteriol. 180 (1998) 2043–2049. [PMID: 9555884]
[EC 1.14.15.26 created 2018]
 
 
EC 1.17.99.2     
Accepted name: ethylbenzene hydroxylase
Reaction: ethylbenzene + H2O + acceptor = (S)-1-phenylethanol + reduced acceptor
For diagram of reaction, click here
Other name(s): ethylbenzene dehydrogenase; ethylbenzene:(acceptor) oxidoreductase
Systematic name: ethylbenzene:acceptor oxidoreductase
Comments: Involved in the anaerobic catabolism of ethylbenzene by denitrifying bacteria. Ethylbenzene is the preferred substrate; the enzyme from some strains oxidizes propylbenzene, 1-ethyl-4-fluorobenzene, 3-methylpent-2-ene and ethylidenecyclohexane. Toluene is not oxidized. p-Benzoquinone or ferrocenium can act as electron acceptor. Contains molybdopterin, [4Fe-4S] clusters and heme b.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 372947-56-3
References:
1.  Kniemeyer, O. and Heider, J. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidising molybdenum/iron-sulfur/heme enzyme. J. Biol. Chem. 276 (2001) 21381–21386. [DOI] [PMID: 11294876]
2.  Johnson, H.A., Pelletier, D.A. and Spormann, A.M. Isolation and characterisation of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J. Bacteriol. 183 (2001) 4536–4542. [DOI] [PMID: 11443088]
[EC 1.17.99.2 created 2001]
 
 
EC 1.18.1.3     
Accepted name: ferredoxin—NAD+ reductase
Reaction: (1) 2 reduced [2Fe-2S] ferredoxin + NAD+ + H+ = 2 oxidized [2Fe-2S] ferredoxin + NADH
(2) reduced 2[4Fe-4S] ferredoxin + NAD+ + H+ = oxidized 2[4Fe-4S] ferredoxin + NADH
Glossary: ferredoxin
Other name(s): ferredoxin-nicotinamide adenine dinucleotide reductase; ferredoxin reductase (ambiguous); NAD+-ferredoxin reductase; NADH-ferredoxin oxidoreductase; reductase, reduced nicotinamide adenine dinucleotide-ferredoxin; ferredoxin-NAD+ reductase; NADH-ferredoxin reductase; NADH2-ferredoxin oxidoreductase; NADH flavodoxin oxidoreductase; NADH-ferredoxin NAP reductase (component of naphthalene dioxygenase multicomponent enzyme system); ferredoxin-linked NAD+ reductase; NADH-ferredoxin TOL reductase (component of toluene dioxygenase); ferredoxin—NAD reductase
Systematic name: ferredoxin:NAD+ oxidoreductase
Comments: Contains FAD. Reaction (1) is written for a [2Fe-2S] ferredoxin, which is characteristic of some mono- and dioxygenase systems. The alternative reaction (2) is written for a 2[4Fe-4S] ferredoxin, which transfers two electrons, and occurs in metabolism of anaerobic bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 39369-37-4
References:
1.  Jungerman, K., Thauer, R.F., Leimenstoll, G. and Decker, K. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim. Biophys. Acta 305 (1973) 268–280. [DOI] [PMID: 4147457]
2.  Haigler, B.E. and Gibson, D.T. Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172 (1990) 457–464. [DOI] [PMID: 2294092]
3.  Ramachandra, M., Seetharam, R., Emptage, M.H. and Sariaslani, F.S. Purification and characterization of a soybean flour-inducible ferredoxin reductase of Streptomyces griseus. J. Bacteriol. 173 (1991) 7106–7112. [DOI] [PMID: 1938912]
4.  Shaw, J.P. and Harayama, S. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Eur. J. Biochem. 209 (1992) 51–61. [DOI] [PMID: 1327782]
[EC 1.18.1.3 created 1976 as EC 1.6.7.3, transferred 1978 to EC 1.18.1.3, modified 2011]
 
 
EC 2.3.1.310     
Accepted name: benzoylsuccinyl-CoA thiolase
Reaction: (S)-2-benzoylsuccinyl-CoA + CoA = benzoyl-CoA + succinyl-CoA
Other name(s): bbsAB (gene names)
Systematic name: (S)-2-benzoylsuccinyl-CoA:CoA benzoyltransferase (benzoyl-CoA-forming)
Comments: The enzyme, characterized from the bacteria Thauera aromatica and Geobacter metallireducens, participates in an anaerobic toluene degradation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Leuthner, B. and Heider, J. Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of β oxidation of the intermediate benzylsuccinate. J. Bacteriol. 182 (2000) 272–277. [DOI] [PMID: 10629170]
2.  Weidenweber, S., Schuhle, K., Lippert, M.L., Mock, J., Seubert, A., Demmer, U., Ermler, U. and Heider, J. Finis tolueni: a new type of thiolase with an integrated Zn-finger subunit catalyzes the final step of anaerobic toluene metabolism. FEBS J. (2022) . [DOI] [PMID: 35313080]
[EC 2.3.1.310 created 2022]
 
 
EC 2.8.3.15     
Accepted name: succinyl-CoA:(R)-benzylsuccinate CoA-transferase
Reaction: succinyl-CoA + (R)-2-benzylsuccinate = succinate + (R)-2-benzylsuccinyl-CoA
For diagram of anaerobic toluene catabolism, click here
Other name(s): benzylsuccinate CoA-transferase
Systematic name: succinyl-CoA:(R)-2-benzylsuccinate CoA-transferase
Comments: Involved in anaerobic catabolism of toluene and is a strictly toluene-induced enzyme that catalyses the reversible regio- and enantio-selective synthesis of (R)-2-benzylsuccinyl-CoA. The enzyme from Thauera aromatica is inactive when (R)-benzylsuccinate is replaced by (S)-benzylsuccinate.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 260966-56-1
References:
1.  Leutwein, C. and Heider, J. Succinyl-CoA:(R)-benzylsuccinate CoA-transferase: an enzyme of the anaerobic toluene catabolic pathway in denitrifying bacteria. J. Bacteriol. 183 (2001) 4288–4295. [DOI] [PMID: 11418570]
2.  Leutwein, C. and Heider, J. Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and β-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiology 145 (1999) 3265–3271. [DOI] [PMID: 10589736]
3.  Leuthner, B. and Heider, J. Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of β oxidation of the intermediate benzylsuccinate. J. Bacteriol. 182 (2000) 272–277. [DOI] [PMID: 10629170]
4.  Heider, J. A new familiy of CoA-transferases. FEBS Lett. 509 (2001) 345–349. [DOI] [PMID: 11749953]
[EC 2.8.3.15 created 2003]
 
 
EC 3.7.1.25     
Accepted name: 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase
Reaction: (2Z,4E)-2-hydroxy-6-oxohepta-2,4-dienoate + H2O = (2Z)-2-hydroxypenta-2,4-dienoate + acetate
Other name(s): todF (gene name)
Systematic name: (2Z,4E)-2-hydroxy-6-oxohepta-2,4-dienoate acetylhydrolase
Comments: A bacterial enzyme that participates in the degradation of toluene and 2-nitrotoluene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kukor, J.J. and Olsen, R.H. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. J. Bacteriol. 173 (1991) 4587–4594. [PMID: 1856161]
2.  Menn, F.M., Zylstra, G.J. and Gibson, D.T. Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 104 (1991) 91–94. [PMID: 1916282]
3.  Haigler, B.E., Wallace, W.H. and Spain, J.C. Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42. Appl. Environ. Microbiol. 60 (1994) 3466–3469. [PMID: 7944378]
[EC 3.7.1.25 created 2019]
 
 
EC 4.1.1.119     
Accepted name: phenylacetate decarboxylase
Reaction: phenylacetate = toluene + CO2
Other name(s): phdB (gene name)
Systematic name: phenylacetate carboxy-lyase
Comments: This bacterial enzyme, isolated from anoxic, toluene-producing microbial communities, is a glycyl radical enzyme. It needs to be activated by a dedicated activating enzyme (PhdA). The activase catalyses the reductive cleavage of AdoMet, producing a 5′-deoxyadenosyl radical that leads to the production of the glycyl radical in PhdB.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zargar, K., Saville, R., Phelan, R.M., Tringe, S.G., Petzold, C.J., Keasling, J.D. and Beller, H.R. In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community. Sci. Rep. 6:31362 (2016). [PMID: 27506494]
2.  Beller, H.R., Rodrigues, A.V., Zargar, K., Wu, Y.W., Saini, A.K., Saville, R.M., Pereira, J.H., Adams, P.D., Tringe, S.G., Petzold, C.J. and Keasling, J.D. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat. Chem. Biol. 14 (2018) 451–457. [PMID: 29556105]
3.  Rodrigues, A.V., Tantillo, D.J., Mukhopadhyay, A., Keasling, J.D. and Beller, H. Insights into the mechanism of phenylacetate decarboxylase (PhdB), a toluene-producing glycyl radical enzyme. ChemBioChem (2019) . [PMID: 31512343]
[EC 4.1.1.119 created 2019]
 
 
EC 4.1.99.11     
Accepted name: benzylsuccinate synthase
Reaction: benzylsuccinate = toluene + fumarate
For diagram of anaerobic toluene catabolism, click here
Other name(s): benzylsuccinate fumarate-lyase
Systematic name: benzylsuccinate fumarate-lyase (toluene-forming)
Comments: A glycyl radical enzyme that is inhibited by benzyl alcohol, benzaldehyde, phenylhydrazine and is inactivated by oxygen.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 209264-18-6
References:
1.  Beller, H.R. and Spormann, A.M. Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J. Bacteriol. 180 (1998) 5454–5457. [PMID: 9765580]
2.  Leuthner, B., Leutwein, C., Schultz, H., Hörth, P., Haehnel, W., Schiltz, E., Schägger, H. and Heider, J. Biochemical and genetic characterisation of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28 (1998) 615–628. [DOI] [PMID: 9632263]
[EC 4.1.99.11 created 2000]
 
 
EC 4.2.1.180     
Accepted name: (E)-benzylidenesuccinyl-CoA hydratase
Reaction: (R,S)-2-(α-hydroxybenzyl)succinyl-CoA = (E)-benzylidenesuccinyl-CoA + H2O
Other name(s): bbsH (gene name)
Systematic name: (R,S)-2-(α-hydroxybenzyl)succinyl-CoA hydro-lyase
Comments: The enzyme, purified from the bacterium Thauera aromatica, is involved in an anaerobic toluene degradation pathway in which it catalyses the hydration of (E)-benzylidenesuccinyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  von Horsten, S., Lippert, M.L., Geisselbrecht, Y., Schuhle, K., Schall, I., Essen, L.O. and Heider, J. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. FEBS J. (2021) . [DOI] [PMID: 34601806]
[EC 4.2.1.180 created 2022]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald