The Enzyme Database

Your query returned 3 entries.    printer_iconPrintable version



EC 1.14.13.186      
Transferred entry: 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase. Now EC 1.14.15.34, 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase
[EC 1.14.13.186 created 2014, deleted 2018]
 
 
EC 1.14.15.34     
Accepted name: 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase
Reaction: 20-oxo-5-O-β-mycaminosyltylactone + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 5-O-β-mycaminosyltylonolide + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
For diagram of tylosin biosynthesis, click here
Glossary: tylactone = (4R,5S,6S,7S,9R,11E,13E,15S,16R)-7,16-diethyl-4,6-dihydroxy-5,9,13,15-tetramethyl-1-oxacyclohexadeca-11,13-diene-2,10-dione
α-D-mycaminose = 3-dimethylamino-3,6-dideoxy-α-D-glucopyranose
tylonolide = 2-[(4R,5S,6S,7R,9R,11E,13E,15R,16R)-16-ethyl-4,6-dihydroxy-15-(hydroxymethyl)-5,9,13-trimethyl-2,10-dioxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde
Other name(s): tylH1 (gene name)
Systematic name: 20-oxo-5-O-β-mycaminosyltylactone,reduced ferredoxin:oxygen oxidoreductase (23-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Involved in the biosynthetic pathway of the macrolide antibiotic tylosin, which is produced by several species of Streptomyces bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Baltz, R.H. and Seno, E.T. Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 20 (1981) 214–225. [PMID: 7283418]
2.  Reeves, C.D., Ward, S.L., Revill, W.P., Suzuki, H., Marcus, M., Petrakovsky, O.V., Marquez, S., Fu, H., Dong, S.D. and Katz, L. Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in engineered Streptomyces fradiae hosts. Chem. Biol. 11 (2004) 1465–1472. [DOI] [PMID: 15489173]
[EC 1.14.15.34 created 2014 as EC 1.14.13.186, transferred 2018 to EC 1.14.15.34]
 
 
EC 2.4.1.317     
Accepted name: O-mycaminosyltylonolide 6-deoxyallosyltransferase
Reaction: 5-O-β-D-mycaminosyltylonolide + dTDP-6-deoxy-α-D-allose = dTDP + demethyllactenocin
For diagram of tylosin biosynthesis, click here
Glossary: mycaminose = 3,6-dideoxy-3-dimethylamino-glucopyranose
tylonolide = 2-[(4R,5S,6S,7R,9R,11E,13E,15R,16R)-16-ethyl-4,6-dihydroxy-15-(hydroxymethyl)-5,9,13-trimethyl-2,10-dioxooxacyclohexadeca-11,13-dien-7-yl]acetaldehyde
demethyllactenocin = [(2R,3R,4E,6E,9R,11R,12S,13S,14R)-12-{[3,6-dideoxy-3-(dimethylamino)-D-glucopyranosyl]oxy}-2-ethyl-14-hydroxy-5,9,13-trimethyl-8,16-dioxo-11-(2-oxoethyl)oxacyclohexadeca-4,6-dien-3-yl]methyl 6-deoxy-β-D-allopyranoside
Other name(s): tylN (gene name)
Systematic name: dTDP-6-deoxy-α-D-allose:5-O-β-D-mycaminosyltylonolide 23-O-6-deoxy-α-D-allosyltransferase
Comments: The enzyme participates in the biosynthetic pathway of the macrolide antibiotic tylosin, which is produced by several species of Streptomyces bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wilson, V.T. and Cundliffe, E. Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer, Streptomyces fradiae. Gene 214 (1998) 95–100. [DOI] [PMID: 9651492]
[EC 2.4.1.317 created 2014]
 
 


Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald