The Enzyme Database

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)

Proposed Changes to the Enzyme List

The entries below are proposed additions and amendments to the Enzyme Nomenclature list. They were prepared for the NC-IUBMB by Kristian Axelsen, Richard Cammack, Ron Caspi, Masaaki Kotera, Andrew McDonald, Gerry Moss, Dietmar Schomburg, Ida Schomburg and Keith Tipton. Comments and suggestions on these draft entries should be sent to Dr Andrew McDonald (Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland). The date on which an enzyme will be made official is appended after the EC number. To prevent confusion please do not quote new EC numbers until they are incorporated into the main list.

An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.


Contents

*EC 1.1.3.2 L-lactate oxidase
EC 1.7.1.17 FMN-dependent NADH-azoreductase
EC 1.13.11.85 exo-cleaving rubber dioxygenase
EC 1.14.11.19 transferred
EC 1.14.11.22 transferred
EC 1.14.11.23 transferred
EC 1.14.11.34 transferred
EC 1.14.11.50 transferred
EC 1.14.13.191 transferred
EC 1.14.14.70 ent-sandaracopimaradiene 3-hydroxylase
EC 1.14.14.71 cucurbitadienol 11-hydroxylase
EC 1.14.14.72 drimenol monooxygenase
*EC 1.14.19.9 tryptophan 7-halogenase
EC 1.14.19.54 1,2-dehydroreticuline synthase
EC 1.14.19.55 4-hydroxybenzoate brominase (decarboxylating)
EC 1.14.19.56 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] chlorinase
EC 1.14.19.57 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] brominase
EC 1.14.19.58 tryptophan 5-halogenase
EC 1.14.19.59 tryptophan 6-halogenase
EC 1.14.19.60 7-chloro-L-tryptophan 6-halogenase
EC 1.14.20.4 anthocyanidin synthase
EC 1.14.20.5 flavone synthase I
EC 1.14.20.6 flavonol synthase
EC 1.14.20.7 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)
EC 1.14.20.8 (–)-deoxypodophyllotoxin synthase
EC 2.1.1.348 mRNA m6A methyltransferase
*EC 2.4.1.53 poly(ribitol-phosphate) β-glucosyltransferase
*EC 2.4.1.70 poly(ribitol-phosphate) α-N-acetylglucosaminyltransferase
*EC 2.4.1.101 α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
*EC 2.4.1.143 α-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
*EC 2.4.1.144 β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
*EC 2.4.1.145 α-1,3-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
*EC 2.4.1.195 N-hydroxythioamide S-β-glucosyltransferase
*EC 2.4.1.201 α-1,6-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
EC 2.4.1.353 sordaricin 6-deoxyaltrosyltransferase
EC 2.4.1.354 (R)-mandelonitrile β-glucosyltransferase
EC 2.4.1.355 poly(ribitol-phosphate) β-N-acetylglucosaminyltransferase
EC 2.4.2.59 sulfide-dependent adenosine diphosphate thiazole synthase
EC 2.4.2.60 cysteine-dependent adenosine diphosphate thiazole synthase
EC 2.5.1.143 pyridinium-3,5-biscarboxylic acid mononucleotide synthase
*EC 2.7.1.209 L-erythrulose 1-kinase
*EC 2.8.1.8 lipoyl synthase
*EC 3.2.1.106 mannosyl-oligosaccharide glucosidase
*EC 3.2.1.114 mannosyl-oligosaccharide 1,3-1,6-α-mannosidase
EC 3.2.1.207 mannosyl-oligosaccharide α-1,3-glucosidase
EC 3.5.1.128 deaminated glutathione amidase
*EC 3.7.1.4 phloretin hydrolase
EC 5.3.3.22 lutein isomerase
EC 5.5.1.31 hapalindole H synthase
EC 5.5.1.32 12-epi-hapalindole U synthase
EC 5.5.1.33 12-epi-fischerindole U synthase
EC 6.2.1.53 L-proline—[L-prolyl-carrier protein] ligase
EC 6.2.1.54 D-alanine—[D-alanyl-carrier protein] ligase


*EC 1.1.3.2 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: L-lactate oxidase
Reaction: (S)-lactate + O2 = pyruvate + H2O2
Other name(s): lctO (gene name); LOX
Systematic name: (S)-lactate:oxygen 2-oxidoreductase
Comments: Contains flavin mononucleotide (FMN). The best characterized enzyme is that from the bacterium Aerococcus viridans. The enzyme is widely used in biosensors to measure the lactate concentration in blood and other tissues.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc
References:
1.  Duncan, J.D., Wallis, J.O. and Azari, M.R. Purification and properties of Aerococcus viridans lactate oxidase. Biochem. Biophys. Res. Commun. 164 (1989) 919–926. [PMID: 2818595]
2.  Maeda-Yorita, K., Aki, K., Sagai, H., Misaki, H. and Massey, V. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme. Biochimie 77 (1995) 631–642. [PMID: 8589073]
3.  Gibello, A., Collins, M.D., Dominguez, L., Fernandez-Garayzabal, J.F. and Richardson, P.T. Cloning and analysis of the L-lactate utilization genes from Streptococcus iniae. Appl. Environ. Microbiol. 65 (1999) 4346–4350. [PMID: 10508058]
4.  Umena, Y., Yorita, K., Matsuoka, T., Kita, A., Fukui, K. and Morimoto, Y. The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1 Å resolution reveals the mechanism of strict substrate recognition. Biochem. Biophys. Res. Commun. 350 (2006) 249–256. [PMID: 17007814]
5.  Furuichi, M., Suzuki, N., Dhakshnamoorhty, B., Minagawa, H., Yamagishi, R., Watanabe, Y., Goto, Y., Kaneko, H., Yoshida, Y., Yagi, H., Waga, I., Kumar, P.K. and Mizuno, H. X-ray structures of Aerococcus viridans lactate oxidase and its complex with D-lactate at pH 4.5 show an α-hydroxyacid oxidation mechanism. J. Mol. Biol. 378 (2008) 436–446. [PMID: 18367206]
6.  Stoisser, T., Brunsteiner, M., Wilson, D.K. and Nidetzky, B. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr215 in Aerococcus viridans lactate oxidase. Sci Rep 6:27892 (2016). [PMID: 27302031]
[EC 1.1.3.2 created 1961, transferred 1972 to EC 1.13.12.4, reinstated 2018]
 
 
EC 1.7.1.17 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: FMN-dependent NADH-azoreductase
Reaction: anthranilate + N,N-dimethyl-1,4-phenylenediamine + 2 NAD+ = 2-(4-dimethylaminophenyl)diazenylbenzoate + 2 NADH + 2 H+
Glossary: 2-(4-dimethylaminophenyl)diazenylbenzoate = methyl red
Other name(s): azoR (gene name); NADH-azoreductase
Systematic name: N,N-dimethyl-1,4-phenylenediamine, anthranilate:NAD+ oxidoreductase
Comments: Requires FMN. The enzyme catalyses the reductive cleavage of an azo bond in aromatic azo compounds to form the corresponding amines. Does not accept NADPH. cf. EC 1.7.1.6, azobenzene reductase.
References:
1.  Nakanishi, M., Yatome, C., Ishida, N. and Kitade, Y. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J. Biol. Chem. 276 (2001) 46394–46399. [PMID: 11583992]
2.  Ito, K., Nakanishi, M., Lee, W.C., Sasaki, H., Zenno, S., Saigo, K., Kitade, Y. and Tanokura, M. Crystallization and preliminary X-ray analysis of AzoR (azoreductase) from Escherichia coli. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 399–402. [PMID: 16511052]
3.  Ito, K., Nakanishi, M., Lee, W.C., Zhi, Y., Sasaki, H., Zenno, S., Saigo, K., Kitade, Y. and Tanokura, M. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J. Biol. Chem. 283 (2008) 13889–13896. [PMID: 18337254]
4.  Mercier, C., Chalansonnet, V., Orenga, S. and Gilbert, C. Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction. J. Appl. Microbiol. 115 (2013) 1012–1022. [PMID: 23795903]
[EC 1.7.1.17 created 2018]
 
 
EC 1.13.11.85 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: exo-cleaving rubber dioxygenase
Reaction: cis-1,4-polyisoprene + n O2 = n (4Z,8Z)-4,8-dimethyl-12-oxotrideca-4,8-dienal
Other name(s): roxA (gene name); heme-dependent rubber oxygenase (ambiguous)
Systematic name: cis-1,4-polyisoprene:oxygen dioxygenase [(4Z,8Z)-4,8-dimethyl-12-oxotrideca-4,8-dienal-forming]
Comments: The enzyme, studied mainly from the bacterium Xanthomonas sp. 35Y, catalyses the cleavage of the double bonds in natural and synthetic rubber (cis-1,4-polyisoprene polymers), generating ends that contain ketone and aldehyde groups. The enzyme from Xanthomonas sp. 35Y contains two c-type cytochromes. It attacks the substrate from its end, producing a single product of 15 carbons.
References:
1.  Tsuchii, A. and Takeda, K. Rubber-degrading enzyme from a bacterial culture. Appl. Environ. Microbiol. 56 (1990) 269–274. [PMID: 16348100]
2.  Jendrossek, D. and Reinhardt, S. Sequence analysis of a gene product synthesized by Xanthomonas sp. during growth on natural rubber latex. FEMS Microbiol. Lett. 224 (2003) 61–65. [PMID: 12855168]
3.  Braaz, R., Fischer, P. and Jendrossek, D. Novel type of heme-dependent oxygenase catalyzes oxidative cleavage of rubber (poly-cis-1,4-isoprene). Appl. Environ. Microbiol. 70 (2004) 7388–7395. [PMID: 15574940]
4.  Braaz, R., Armbruster, W. and Jendrossek, D. Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of poly(cis-1,4-Isoprene) by a dioxygenase mechanism. Appl. Environ. Microbiol. 71 (2005) 2473–2478. [PMID: 15870336]
5.  Seidel, J., Schmitt, G., Hoffmann, M., Jendrossek, D. and Einsle, O. Structure of the processive rubber oxygenase RoxA from Xanthomonas sp. Proc. Natl Acad. Sci. USA 110 (2013) 13833–13838. [PMID: 23922395]
6.  Birke, J. and Jendrossek, D. Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms. Appl. Environ. Microbiol. 80 (2014) 5012–5020. [PMID: 24907333]
[EC 1.13.11.85 created 2018]
 
 
EC 1.14.11.19 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Transferred entry: anthocyanidin synthase. Now EC 1.14.20.4, anthocyanidin synthase
[EC 1.14.11.19 created 2001, modified 2017, deleted 2018]
 
 
EC 1.14.11.22 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Transferred entry: flavone synthase. Now EC 1.14.20.5, flavone synthase
[EC 1.14.11.22 created 2004, deleted 2018]
 
 
EC 1.14.11.23 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Transferred entry: flavonol synthase. Now EC 1.14.20.6, flavonol synthase
[EC 1.14.11.23 created 2004, deleted 2018]
 
 
EC 1.14.11.34 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Transferred entry: 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming). Now EC 1.14.20.7, 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)
[EC 1.14.11.34 created 2011, deleted 2018]
 
 
EC 1.14.11.50 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Transferred entry: (–)-deoxypodophyllotoxin synthase. Now EC 1.14.20.8, (–)-deoxypodophyllotoxin synthase
[EC 1.14.11.50 created 2016, deleted 2018]
 
 
EC 1.14.13.191 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Transferred entry: ent-sandaracopimaradiene 3-hydroxylase. Now EC 1.14.14.70, ent-sandaracopimaradiene 3-hydroxylase
[EC 1.14.13.191 created 2014, deleted 2018]
 
 
EC 1.14.14.70 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: ent-sandaracopimaradiene 3-hydroxylase
Reaction: ent-sandaracopimaradiene + [reduced NADPH—hemoprotein reductase] + O2 = ent-sandaracopimaradien-3β-ol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of oryzalexins biosynthesis, click here
Glossary: ent-sandaracopimaradiene = ent-13α-pimara-8(14),15-diene = (4aR,4bR,7S,10aR)-7-ethenyl-1,1,4a,7-tetramethyl-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodecahydrophenanthrene
Other name(s): CYP701A; OsKOL4
Systematic name: ent-sandaracopimaradiene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ent-sandaracopimaradien-3β-ol forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from Oryza sativa (rice). Participates in the pathway for the biosynthesis of oryzalexins, a group of related phytoalexins produced by rice. Can also use 9β-pimara-7,15-diene as substrate (cf. EC 1.14.14.68, syn-pimaradiene 3-monooxygenase).
References:
1.  Wang, Q., Hillwig, M.L., Wu, Y. and Peters, R.J. CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol. 158 (2012) 1418–1425. [PMID: 22247270]
2.  Wu, Y., Wang, Q., Hillwig, M.L. and Peters, R.J. Picking sides: distinct roles for CYP76M6 and CYP76M8 in rice oryzalexin biosynthesis. Biochem. J. 454 (2013) 209–216. [PMID: 23795884]
[EC 1.14.14.70 created 2014 as EC 1.14.13.191, transferred 2018 to EC 1.14.14.70]
 
 
EC 1.14.14.71 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: cucurbitadienol 11-hydroxylase
Reaction: cucurbitadienol + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = 11-oxocucurbitadienol + 2 [oxidized NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) cucurbitadienol + [reduced NADPH—hemoprotein reductase] + O2 = 11-hydroxycucurbitadienol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 11-hydroxycucurbitadienol + [reduced NADPH—hemoprotein reductase] + O2 = 11-oxocucurbitadienol + [oxidized NADPH—hemoprotein reductase] + 2 H2O
Glossary: 11-oxocucurbitadienol = 3β-hydroxycucurbita-7,24-dien-11-one
Other name(s): CYP87D18
Systematic name: cucurbitadienol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (11-oxocucurbitadienol forming)
Comments: Isolated from the plant Siraitia grosvenorii (monk fruit).
References:
1.  Zhang, J., Dai, L., Yang, J., Liu, C., Men, Y., Zeng, Y., Cai, Y., Zhu, Y. and Sun, Y. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol 57 (2016) 1000–1007. [PMID: 26903528]
[EC 1.14.14.71 created 2018]
 
 
EC 1.14.14.72 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: drimenol monooxygenase
Reaction: drimenol + [reduced NADPH—hemoprotein reductase] + O2 = drimendiol + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: drimendiol = drim-7-ene-11,12-diol
Other name(s): PhDOX1
Systematic name: drimenol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (drimendiol forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Persicaria hydropiper (water pepper).
References:
1.  Henquet, M.GL., Prota, N., van der Hooft, J.JJ., Varbanova-Herde, M., Hulzink, R.JM., de Vos, M., Prins, M., de Both, M.TJ., Franssen, M.CR., Bouwmeester, H. and Jongsma, M. Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes. Plant J. 90 (2017) 1052–1063. [PMID: 28258968]
[EC 1.14.14.72 created 2018]
 
 
*EC 1.14.19.9 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: tryptophan 7-halogenase
Reaction: tryptophan + FADH2 + chloride + O2 + H+ = 7-chloro-L-tryptophan + FAD + 2 H2O
For diagram of rebeccamycin biosynthesis, click here
Other name(s): prnA (gene name); rebH (gene name); ktzQ (gene name)
Systematic name: L-tryptophan:FADH2 oxidoreductase (7-halogenating)
Comments: A flavin-dependent halogenase. The enzyme from the bacterium Lechevalieria aerocolonigenes catalyses the initial step in the biosynthesis of rebeccamycin [2]. It utilizes molecular oxygen to oxidize the FADH2 cofactor, giving C4a-hydroperoxyflavin, which then reacts with chloride to produce a hypochlorite ion. The latter reacts with an active site lysine to generate a chloramine, which chlorinates the substrate. Also acts on bromide ion. cf. EC 1.14.19.58, tryptophan 5-halogenase, and EC 1.14.19.59, tryptophan 6-halogenase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc
References:
1.  Dong, C., Kotzsch, A., Dorward, M., van Pee, K.H. and Naismith, J.H. Crystallization and X-ray diffraction of a halogenating enzyme, tryptophan 7-halogenase, from Pseudomonas fluorescens. Acta Crystallogr. D Biol. Crystallogr. 60 (2004) 1438–1440. [PMID: 15272170]
2.  Yeh, E., Garneau, S. and Walsh, C.T. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc. Natl. Acad. Sci. USA 102 (2005) 3960–3965. [PMID: 15743914]
3.  Bitto, E., Huang, Y., Bingman, C.A., Singh, S., Thorson, J.S. and Phillips Jr., G.N. The structure of flavin-dependent tryptophan 7-halogenase RebH. Proteins Struct. Funct. Genet. 70 (2008) 289–293.
4.  Heemstra, J.R., Jr. and Walsh, C.T. Tandem action of the O2- and FADH2-dependent halogenases KtzQ and KtzR produce 6,7-dichlorotryptophan for kutzneride assembly. J. Am. Chem. Soc. 130 (2008) 14024–14025. [PMID: 18828589]
[EC 1.14.19.9 created 2009 as EC 1.14.14.7, transferred 2014 to EC 1.14.19.9, modified 2018]
 
 
EC 1.14.19.54 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 1,2-dehydroreticuline synthase
Reaction: (S)-reticuline + [reduced NADPH—hemoprotein reductase] + O2 = 1,2-dehydroreticuline + [oxidized NADPH—hemoprotein reductase] + 2 H2O
Glossary: reticuline = 1-(3-hydroxy-4-methoxybenzyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol
Other name(s): STORR; CYP82Y2 (gene name); DRS (gene name)
Systematic name: (S)-reticuline,[reduced NADPH—hemoprotein reductase]:oxygen 1,2-oxidoreductase
Comments: A P-450 (heme-thiolate) cytochrome. The enzyme from Papaver rhoeas (field poppy) is specific for (S)-reticuline and does not act on the (R)-form. The enzyme from Papaver somniferum (opium poppy), which is involved in the biosynthesis of morphine and related alkaloids, forms a fusion protein with EC 1.5.1.27, 1,2-dehydroreticulinium reductase (NADPH), which catalyses the reduction of 1,2-dehydroreticuline to (R)-reticuline, thus forming an epimerase system that converts (S)-reticuline to (R)-reticuline.
References:
1.  Hirata, K., Poeaknapo, C., Schmidt, J. and Zenk, M.H. 1,2-Dehydroreticuline synthase, the branch point enzyme opening the morphinan biosynthetic pathway. Phytochemistry 65 (2004) 1039–1046. [PMID: 15110683]
2.  Winzer, T., Kern, M., King, A.J., Larson, T.R., Teodor, R.I., Donninger, S.L., Li, Y., Dowle, A.A., Cartwright, J., Bates, R., Ashford, D., Thomas, J., Walker, C., Bowser, T.A. and Graham, I.A. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 349 (2015) 309–312. [PMID: 26113639]
3.  Farrow, S.C., Hagel, J.M., Beaudoin, G.A., Burns, D.C. and Facchini, P.J. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat. Chem. Biol. 11 (2015) 728–732. [PMID: 26147354]
[EC 1.14.19.54 created 2018]
 
 
EC 1.14.19.55 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 4-hydroxybenzoate brominase (decarboxylating)
Reaction: (1) 4-hydroxybenzoate + 2 NADPH + 2 bromide + 2 O2 + 2 H+ = 2,4-dibromophenol + 2 NADP+ + CO2 + 4 H2O (overall reaction)
(1a) 4-hydroxybenzoate + NADPH + bromide + O2 + H+ = 3-bromo-4-hydroxybenzoate + NADP+ + 2 H2O
(1b) 3-bromo-4-hydroxybenzoate + NADPH + bromide + O2 + H+ = 2,4-dibromophenol + NADP+ + CO2 + 2 H2O
(2) 3,4-dihydroxybenzoate + 2 NADPH + 2 bromide + 2 O2 + 2 H+ = 3,5-dibromobenzene-1,2-diol + 2 NADP+ + CO2 + 4 H2O (overall reaction)
(2a) 3,4-dihydroxybenzoate + NADPH + bromide + O2 + H+ = 3-bromo-4,5-dihydroxybenzoate + NADP+ + 2 H2O
(2b) 3-bromo-4,5-dihydroxybenzoate + NADPH + bromide + O2 + H+ = 3,5-dibromobenzene-1,2-diol + NADP+ + CO2 + 2 H2O
Other name(s): bmp5 (gene name)
Systematic name: 4-hydroxybenzoate:NADPH oxidoreductase (brominating, decarboxylating)
Comments: Contains FAD. The enzyme, described from epiphytic marine bacteria of the genera Pseudoalteromonas and Marinomonas, is an unusual single-component FAD-dependent halogenase that contains a distinct NAD(P)H binding domain and does not require an additional flavin reductase for activity. The enzyme catalyses a bromination of its substrate, followed by a second bromination concurrent with decarboxylation.
References:
1.  Agarwal, V., El Gamal, A.A., Yamanaka, K., Poth, D., Kersten, R.D., Schorn, M., Allen, E.E. and Moore, B.S. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 10 (2014) 640–647. [PMID: 24974229]
2.  Agarwal, V. and Moore, B.S. Enzymatic synthesis of polybrominated dioxins from the marine environment. ACS Chem. Biol. 9 (2014) 1980–1984. [PMID: 25061970]
[EC 1.14.19.55 created 2018]
 
 
EC 1.14.19.56 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] chlorinase
Reaction: 1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + 2 FADH2 + 2 chloride + 2 O2 = 4,5-dichloro-1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + 2 FAD + 4 H2O (overall reaction)
(1a) 1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FADH2 + chloride + O2 = 5-chloro-1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FAD + 2 H2O
(1b) 5-chloro-1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FADH2 + chloride + O2 = 4,5-dichloro-1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FAD + H2O
Glossary: pyoluteorin = 4,5-dichloro-1H-pyrrol-2-yl 2,6-dihydroxyphenyl
Other name(s): pltA (gene name)
Systematic name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein]:FADH2 oxidoreductase (chlorinating)
Comments: The enzyme, characterized from the bacterium Pseudomonas protegens Pf-5, is a flavin-dependent chlorinase that participates in the biosynthesis of the antibacterial and antifungal compound pyoluteorin.
References:
1.  Nowak-Thompson, B., Chaney, N., Wing, J.S., Gould, S.J. and Loper, J.E. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181 (1999) 2166–2174. [PMID: 10094695]
2.  Dorrestein, P.C., Yeh, E., Garneau-Tsodikova, S., Kelleher, N.L. and Walsh, C.T. Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc. Natl Acad. Sci. USA 102 (2005) 13843–13848. [PMID: 16162666]
3.  Pang, A.H., Garneau-Tsodikova, S. and Tsodikov, O.V. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. J. Struct. Biol. 192 (2015) 349–357. [PMID: 26416533]
[EC 1.14.19.56 created 2018]
 
 
EC 1.14.19.57 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] brominase
Reaction: 1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + 3 FADH2 + 3 bromide + 3 O2 = 3,4,5-tribromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + 3 FAD + 6 H2O (overall reaction)
(1a) 1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FADH2 + bromide + O2 = 5-bromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FAD + 2 H2O
(1b) 5-bromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FADH2 + bromide + O2 = 4,5-dibromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FAD + 2 H2O
(1c) 4,5-dibromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FADH2 + bromide + O2 = 3,4,5-tribromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FAD + 2 H2O
Other name(s): bmp2 (gene name)
Systematic name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein]:FADH2 oxidoreductase (brominating)
Comments: The enzyme, characterized from marine bacteria of the Pseudoalteromonas genus, belongs to a family of FAD-dependent halogenases that act on acyl-carrier protein-tethered substrates. It catalyses three successive rounds of bromination. While the order has not been verified, it is believed to resemble that of EC 1.14.19.56, S-(1H-pyrrole-2-carbonyl)-[peptidyl-carrier protein] chlorinase, due to significant sequence homology. Reduced FAD is provided in situ by a dedicated reductase and diffuses into the active site, where it reacts with the oxygen and bromide ion, resulting in formation of a bromoamine intermediate on a catalytic lysine side chain, and the eventual transfer of the bromide to the substrate. The enzyme from Pseudoalteromonas luteoviolacea 2ta16 is specific for bromide and does not accept chloride.
References:
1.  Agarwal, V., El Gamal, A.A., Yamanaka, K., Poth, D., Kersten, R.D., Schorn, M., Allen, E.E. and Moore, B.S. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 10 (2014) 640–647. [PMID: 24974229]
[EC 1.14.19.57 created 2018]
 
 
EC 1.14.19.58 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: tryptophan 5-halogenase
Reaction: L-tryptophan + FADH2 + chloride + O2 + H+ = 5-chloro-L-tryptophan + FAD + 2 H2O
Other name(s): pyrH (gene name)
Systematic name: L-tryptophan:FADH2 oxidoreductase (5-halogenating)
Comments: A flavin-dependent halogenase. The enzyme from the bacterium Streptomyces rugosporus catalyses halogenation of the C-5 position of tryptophan during the biosynthesis of the antibiotic compound pyrroindomycin B. It utilizes molecular oxygen to oxidize the FADH2 cofactor, giving C4a-hydroperoxyflavin, which then reacts with chloride to produce a hypochlorite ion. The latter reacts with an active site lysine to generate a chloramine, which chlorinates the substrate. cf. EC 1.14.19.59, tryptophan 6-halogenase and EC 1.14.19.9, tryptophan 7-halogenase.
References:
1.  Zehner, S., Kotzsch, A., Bister, B., Sussmuth, R.D., Mendez, C., Salas, J.A. and van Pee, K.H. A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem. Biol. 12 (2005) 445–452. [PMID: 15850981]
2.  Zhu, X., De Laurentis, W., Leang, K., Herrmann, J., Ihlefeld, K., van Pee, K.H. and Naismith, J.H. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J. Mol. Biol. 391 (2009) 74–85. [PMID: 19501593]
[EC 1.14.19.58 created 2018]
 
 
EC 1.14.19.59 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: tryptophan 6-halogenase
Reaction: (1) L-tryptophan + FADH2 + chloride + O2 + H+ = 6-chloro-L-tryptophan + FAD + 2 H2O
(2) D-tryptophan + FADH2 + chloride + O2 + H+ = 6-chloro-D-tryptophan + FAD + 2 H2O
Other name(s): sttH (gene name); thdH (gene name)
Systematic name: L-tryptophan:FADH2 oxidoreductase (6-halogenating)
Comments: The enzyme is a flavin-dependent halogenase that has been described from several bacterial species. It utilizes molecular oxygen to oxidize the FADH2 cofactor, giving C4a-hydroperoxyflavin, which then reacts with chloride to produce a hypochlorite ion. The latter reacts with an active site lysine to generate a chloramine, which chlorinates the substrate. cf. EC 1.14.19.58, tryptophan 5-halogenase, and EC 1.14.19.9, tryptophan 7-halogenase.
References:
1.  Zeng, J. and Zhan, J. Characterization of a tryptophan 6-halogenase from Streptomyces toxytricini. Biotechnol. Lett. 33 (2011) 1607–1613. [PMID: 21424165]
2.  Milbredt, D., Patallo, E.P. and van Pee, K.H. A tryptophan 6-halogenase and an amidotransferase are involved in thienodolin biosynthesis. Chembiochem 15 (2014) 1011–1020. [PMID: 24692213]
3.  Shepherd, S.A., Menon, B.R., Fisk, H., Struck, A.W., Levy, C., Leys, D. and Micklefield, J. A structure-guided switch in the regioselectivity of a tryptophan halogenase. Chembiochem 17 (2016) 821–824. [PMID: 26840773]
[EC 1.14.19.59 created 2018]
 
 
EC 1.14.19.60 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 7-chloro-L-tryptophan 6-halogenase
Reaction: 7-chloro-L-tryptophan + FADH2 + chloride + O2 + H+ = 6,7-dichloro-L-tryptophan + FAD + 2 H2O
Other name(s): ktzR (gene name)
Systematic name: 7-chloro-L-tryptophan:FADH2 oxidoreductase (6-halogenating)
Comments: An FAD-dependent halogenase. The enzyme, characterized from the bacterium Kutzneria sp. 744, works in tandem with EC 1.14.19.9, tryptophan 7-halogenase, (ktzQ) to generate 6,7-dichloro-L-tryptophan, which is incorporated as a pyrroloindoline in the kutznerides family of natural products. It has a 120-fold preference for 7-chloro-L-tryptophan over L-tryptophan as substrate.
References:
1.  Heemstra, J.R., Jr. and Walsh, C.T. Tandem action of the O2- and FADH2-dependent halogenases KtzQ and KtzR produce 6,7-dichlorotryptophan for kutzneride assembly. J. Am. Chem. Soc. 130 (2008) 14024–14025. [PMID: 18828589]
[EC 1.14.19.60 created 2018]
 
 
EC 1.14.20.4 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: anthocyanidin synthase
Reaction: a (2R,3S,4S)-leucoanthocyanidin + 2-oxoglutarate + O2 = an anthocyanidin + succinate + CO2 + 2 H2O (overall reaction)
(1a) a (2R,3S,4S)-leucoanthocyanidin + 2-oxoglutarate + O2 = a (4S)- 2,3-dehydroflavan-3,4-diol + succinate + CO2 + H2O
(1b) a (4S)- 2,3-dehydroflavan-3,4-diol = an anthocyanidin + H2O
For diagram of anthocyanin biosynthesis, click here
Glossary: taxifolin = 3,4-dihydroquercitin
Other name(s): leucocyanidin oxygenase; leucocyanidin,2-oxoglutarate:oxygen oxidoreductase; ANS (gene name)
Systematic name: (2R,3S,4S)-leucoanthocyanidin,2-oxoglutarate:oxygen oxidoreductase
Comments: The enzyme requires Fe(II) and ascorbate. It is involved in the pathway by which many flowering plants make anthocyanin flower pigments (glycosylated anthocyandins). The enzyme hydroxylates the C-3 carbon, followed by a trans diaxial elimination, forming a C-2,C-3 enol. The product loses a second water molecule to form anthocyanidins. When assayed in vitro, non-enzymic epimerization of the product can lead to formation of dihydroflavanols. Thus when the substrate is leucocyanidin, a mixture of (+)-taxifolin and (+)-epitaxifolin are formed. The enzyme can also oxidize the formed (+)-taxifolin to quercetin (cf. EC 1.14.20.6, flavonol synthase) [2,3].
References:
1.  Saito, K., Kobayashi, M., Gong, Z., Tanaka, Y. and Yamazaki, M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J. 17 (1999) 181–190. [PMID: 10074715]
2.  Turnbull, J.J., Sobey, W.J., Aplin, R.T., Hassan, A., Firmin, J.L., Schofield, C.J. and Prescott, A.G. Are anthocyanidins the immediate products of anthocyanidin synthase? Chem. Commun. (2000) 2473–2474.
3.  Wilmouth, R.C., Turnbull, J.J., Welford, R.W., Clifton, I.J., Prescott, A.G. and Schofield, C.J. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10 (2002) 93–103. [PMID: 11796114]
4.  Turnbull, J.J., Nagle, M.J., Seibel, J.F., Welford, R.W., Grant, G.H. and Schofield, C.J. The C-4 stereochemistry of leucocyanidin substrates for anthocyanidin synthase affects product selectivity. Bioorg. Med. Chem. Lett. 13 (2003) 3853–3857. [PMID: 14552794]
5.  Wellmann, F., Griesser, M., Schwab, W., Martens, S., Eisenreich, W., Matern, U. and Lukacin, R. Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett. 580 (2006) 1642–1648. [PMID: 16494872]
[EC 1.14.20.4 created 2001 as EC 1.14.11.19, transferred 2018 to EC 1.14.20.4]
 
 
EC 1.14.20.5 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: flavone synthase I
Reaction: a flavanone + 2-oxoglutarate + O2 = a flavone + succinate + CO2 + H2O
For diagram of flavonoid biosynthesis, click here and for diagram of the biosynthesis of naringenin derivatives, click here
Other name(s): FNSI (gene name)
Systematic name: flavanone,2-oxoglutarate:oxygen oxidoreductase (dehydrating)
Comments: The enzyme, which has been found in rice and in members of the Apiaceae (a plant family), is a member of the 2-oxoglutarate-dependent dioxygenases, and requires ascorbate and Fe2+ for full activity.
References:
1.  Martens, S., Forkmann, G., Matern, U. and Lukačin, R. Cloning of parsley flavone synthase I. Phytochemistry 58 (2001) 43–46. [PMID: 11524111]
2.  Lukačin, R., Matern, U., Junghanns, K.T., Heskamp, M.L., Britsch, L., Forkmann, G. and Martens, S. Purification and antigenicity of flavone synthase I from irradiated parsley cells. Arch. Biochem. Biophys. 393 (2001) 177–183. [PMID: 11516175]
3.  Martens, S., Forkmann, G., Britsch, L., Wellmann, F., Matern, U. and Lukačin, R. Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett. 544 (2003) 93–98. [PMID: 12782296]
[EC 1.14.20.5 created 2004 as EC 1.14.11.22, transferred 2018 to EC 1.14.20.5]
 
 
EC 1.14.20.6 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: flavonol synthase
Reaction: a dihydroflavonol + 2-oxoglutarate + O2 = a flavonol + succinate + CO2 + H2O
For diagram of flavonoid biosynthesis, click here, for diagram of kaempferol biosynthesis, click here and for diagram of myricetin biosynthesis, click here
Other name(s): FLS (gene name)
Systematic name: dihydroflavonol,2-oxoglutarate:oxygen oxidoreductase
Comments: In addition to the desaturation of (2R,3R)-dihydroflavonols to flavonols, the enzyme from Citrus unshiu (satsuma mandarin) also has a non-specific activity that trans-hydroxylates the flavanones (2S)-naringenin and the unnatural (2R)-naringenin at C-3 to kaempferol and (2R,3R)-dihydrokaempferol, respectively [2]. Requires Fe2+.
References:
1.  Wellmann, F., Lukačin, R., Moriguchi, T., Britsch, L., Schiltz, E. and Matern, U. Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Eur. J. Biochem. 269 (2002) 4134–4142. [PMID: 12180990]
2.  Lukačin, R., Wellmann, F., Britsch, L., Martens, S. and Matern, U. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry 62 (2003) 287–292. [PMID: 12620339]
3.  Martens, S., Forkmann, G., Britsch, L., Wellmann, F., Matern, U. and Lukačin, R. Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett. 544 (2003) 93–98. [PMID: 12782296]
4.  Turnbull, J.J., Nakajima, J., Welford, R.W., Yamazaki, M., Saito, K. and Schofield, C.J. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase. J. Biol. Chem. 279 (2004) 1206–1216. [PMID: 14570878]
[EC 1.14.20.6 created 2004 as EC 1.14.11.23, transferred 2018 to EC 1.14.20.6]
 
 
EC 1.14.20.7 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)
Reaction: L-arginine + 2-oxoglutarate + O2 = succinate + CO2 + guanidine + (S)-1-pyrroline-5-carboxylate + H2O (overall reaction)
(1a) L-arginine + 2-oxoglutarate + O2 = succinate + CO2 + 5-hydroxy-L-arginine
(1b) 5-hydroxy-L-arginine = guanidine + (S)-1-pyrroline-5-carboxylate + H2O
Other name(s): ethene-forming enzyme; ethylene-forming enzyme; EFE
Systematic name: L-arginine,2-oxoglutarate:oxygen oxidoreductase (succinate-forming)
Comments: This is one of two simultaneous reactions catalysed by the enzyme, which is responsible for ethylene production in bacteria of the Pseudomonas syringae group. In the other reaction [EC 1.13.12.19, 2-oxoglutarate dioxygenase (ethene-forming)] the enzyme catalyses the dioxygenation of 2-oxoglutarate forming ethene and three molecules of carbon dioxide.The enzyme catalyses two cycles of the ethene-forming reaction for each cycle of the succinate-forming reaction, so that the stoichiometry of the products ethene and succinate is 2:1.
References:
1.  Nagahama, K., Ogawa, T., Fujii, T., Tazaki, M., Tanase, S., Morino, Y. and Fukuda, H. Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. J. Gen. Microbiol. 137 (1991) 2281–2286. [PMID: 1770346]
2.  Fukuda, H., Ogawa, T., Tazaki, M., Nagahama, K., Fujii, T., Tanase, S. and Morino, Y. Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem. Biophys. Res. Commun. 188 (1992) 483–489. [PMID: 1445291]
3.  Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T., Nagahama, K., Omata, T., Inoue, Y., Tanase, S. and Morino, Y. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem. Biophys. Res. Commun. 188 (1992) 826–832. [PMID: 1445325]
4.  Martinez, S., Fellner, M., Herr, C.Q., Ritchie, A., Hu, J. and Hausinger, R.P. Structures and mechanisms of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme: substrate binding creates a twist. J. Am. Chem. Soc. 139 (2017) 11980–11988. [PMID: 28780854]
[EC 1.14.20.7 created 2011 as EC 1.14.11.34, transferred 2018 to EC 1.14.20.7]
 
 
EC 1.14.20.8 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: (–)-deoxypodophyllotoxin synthase
Reaction: (–)-yatein + 2-oxoglutarate + O2 = (–)-deoxypodophyllotoxin + succinate + CO2 + H2O
For diagram of podophyllotoxin biosynthesis, click here
Glossary: (–)-yatein = (3R,4R)-4-(1,3-benzodioxol-5-ylmethyl)-3-(3,4,5-trimethoxybenzyl)dihydrofuran-2(3H)-one
(–)-deoxypodophyllotoxin = (5R,5aR,8aR)-5-(3,4,5-trimethoxyphenyl)-5,8,8a,9-tetrahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-6(5a)-one
Other name(s): 2-ODD (gene name)
Systematic name: (–)-yatein,2-oxoglutarate:oxygen oxidoreductase (ring-forming)
Comments: The enzyme, characterized from the plant Sinopodophyllum hexandrum (mayapple), is involved in the biosynthetic pathway of podophyllotoxin, a non-alkaloid toxin lignan whose derivatives are important anticancer drugs. It catalyses the closure of the central six-membered ring in the aryltetralin scaffold.
References:
1.  Lau, W. and Sattely, E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349 (2015) 1224–1228. [PMID: 26359402]
[EC 1.14.20.8 created 2016 as EC 1.14.11.50, transferred 2018 to EC 1.14.20.8]
 
 
EC 2.1.1.348 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: mRNA m6A methyltransferase
Reaction: S-adenosyl-L-methionine + adenine in mRNA = S-adenosyl-L-homocysteine + N6-methyladenine in mRNA
Other name(s): METTL3 (gene name); METTL14 (gene name)
Systematic name: S-adenosyl-L-methionine:adenine in mRNA methyltransferase
Comments: This enzyme, found in eukaryotes, methylates adenines in mRNA with the consensus sequence RRACH.
References:
1.  Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., Dai, Q., Chen, W. and He, C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10 (2014) 93–95. [PMID: 24316715]
2.  Wang, X., Huang, J., Zou, T. and Yin, P. Human m6A writers: Two subunits, 2 roles. RNA Biol. 14 (2017) 300–304. [PMID: 28121234]
[EC 2.1.1.348 created 2018]
 
 
*EC 2.4.1.53 – public review until 26 April 2018 [Last modified: 2018-03-30 03:48:00]
Accepted name: poly(ribitol-phosphate) β-glucosyltransferase
Reaction: n UDP-α-D-glucose + 4-O-[(1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-[(2-β-D-glucosyl-1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarQ; UDP glucose-poly(ribitol-phosphate) β-glucosyltransferase; uridine diphosphoglucose-poly(ribitol-phosphate) β-glucosyltransferase; UDP-D-glucose polyribitol phosphate glucosyl transferase; UDP-D-glucose:polyribitol phosphate glucosyl transferase; UDP-glucose:poly(ribitol-phosphate) β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:4-O-[(1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of poly ribitol phosphate teichoic acids in the cell wall of the bacterium Bacillus subtilis W23. This enzyme adds a β-D-glucose to the hydroxyl group at the 2 position of the ribitol phosphate units.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 37277-61-5
References:
1.  Chin, T., Burger, M.M. and Glaser, L. Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W-23. Arch. Biochem. Biophys. 116 (1966) 358–367. [PMID: 4960203]
2.  Brown, S., Xia, G., Luhachack, L.G., Campbell, J., Meredith, T.C., Chen, C., Winstel, V., Gekeler, C., Irazoqui, J.E., Peschel, A. and Walker, S. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl Acad. Sci. USA 109 (2012) 18909–18914. [PMID: 23027967]
[EC 2.4.1.53 created 1972, modified 2018]
 
 
*EC 2.4.1.70 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: poly(ribitol-phosphate) α-N-acetylglucosaminyltransferase
Reaction: n UDP-N-acetyl-α-D-glucosamine + 4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-(2-N-acetyl-α-D-glucosaminyl-D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarM; UDP acetylglucosamine-poly(ribitol phosphate) acetylglucosaminyltransferase (ambiguous); uridine diphosphoacetylglucosamine-poly(ribitol phosphate) acetylglucosaminyltransferase (ambiguous); UDP-N-acetyl-D-glucosamine:poly(ribitol-phosphate) N-acetyl-D-glucosaminyltransferase (ambiguous); UDP-N-acetyl-α-D-glucosamine:poly(ribitol-phosphate) N-acetyl-α-D-glucosaminyltransferase (ambiguous); poly(ribitol-phosphate) N-acetylglucosaminyltransferase (ambiguous)
Systematic name: UDP-N-acetyl-α-D-glucosamine:4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Comments: Involved in the biosynthesis of poly(ribitol phosphate) teichoic acids in the cell wall of the bacterium Staphylococcus aureus. This enzyme adds an N-acetyl-α-D-glucosamine to the hydroxyl group at the 2 position of the ribitol phosphate units. cf. EC 2.4.1.355 [poly(ribitol-phosphate) β-N-acetylglucosaminyltransferase].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 37277-71-7
References:
1.  Nathenson, S.G., Ishimoto, N. and Strominger, J.L. UDP-N-acetylglucosamine:polyribitol phosphate N-acetylglucosaminyltransferases from Staphylococcus aureus. Methods Enzymol. 8 (1966) 426–429.
2.  Xia, G., Maier, L., Sanchez-Carballo, P., Li, M., Otto, M., Holst, O. and Peschel, A. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J. Biol. Chem. 285 (2010) 13405–13415. [PMID: 20185825]
3.  Sobhanifar, S., Worrall, L.J., Gruninger, R.J., Wasney, G.A., Blaukopf, M., Baumann, L., Lameignere, E., Solomonson, M., Brown, E.D., Withers, S.G. and Strynadka, N.C. Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase. Proc. Natl Acad. Sci. USA 112 (2015) E576–E585. [PMID: 25624472]
4.  Koc, C., Gerlach, D., Beck, S., Peschel, A., Xia, G. and Stehle, T. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid. J. Biol. Chem. 290 (2015) 9874–9885. [PMID: 25697358]
[EC 2.4.1.70 created 1972, modified 2018]
 
 
*EC 2.4.1.101 – public review until 26 April 2018 [Last modified: 2018-04-04 08:15:01]
Accepted name: α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Man5GlcNAc2-[protein] = UDP + Man5GlcNAc3-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Glossary: Man5GlcNAc2-[protein] = α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Man5GlcNAc3-[protein]= β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT1 (gene name); N-acetylglucosaminyltransferase I; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase I; uridine diphosphoacetylglucosamine-α-1,3-mannosylglycoprotein β-1,2-N-acetylglucosaminyltransferase; UDP-N-acetylglucosaminyl:α-1,3-D-mannoside-β-1,2-N-acetylglucosaminyltransferase I; UDP-N-acetylglucosaminyl:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I; α-1,3-mannosyl-glycoprotein β-1,2-N-acetylglucosaminyltransferase; GnTI; GlcNAc-T I; UDP-N-acetyl-D-glucosamine:3-(α-D-mannosyl)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. Its action is required before the other N-acetylglucosaminyltransferases involved in the process (GlcNAcT-II through VI) can act. While the natural substrate (produced by EC 3.2.1.113, mannosyl-oligosaccharide 1,2-α-mannosidase) is described here, the minimal substrate recognized by the enzyme is α-D-Man-(1→3)-β-D-Man-R.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, PDB, CAS registry number: 102576-81-8
References:
1.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J. Biol. Chem. 255 (1980) 4885–4893. [PMID: 6445358]
2.  Mendicino, J., Chandrasekaran, E.V., Anumula, K.R. and Davila, M. Isolation and properties of α-D-mannose:β-1,2-N-acetylglucosaminyltransferase from trachea mucosa. Biochemistry 20 (1981) 967–976. [PMID: 6452163]
3.  Oppenheimer, C.L. and Hill, R.L. Purification and characterization of a rabbit liver α1→3 mannoside β1→2 N-acetylglucosaminyltransferase. J. Biol. Chem. 256 (1981) 799–804. [PMID: 6450208]
4.  Oppenheimer, C.L., Eckhardt, A.E. and Hill, R.L. The nonidentity of porcine N-acetylglucosaminyltransferases I and II. J. Biol. Chem. 256 (1981) 11477–11482. [PMID: 6457827]
5.  Miyagi, T. and Tsuiki, S. Studies on UDP-N-acetylglucosamine : α-mannoside β-N-acetylglucosaminyltransferase of rat liver and hepatomas. Biochim. Biophys. Acta 661 (1981) 148–157. [PMID: 6170335]
6.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
7.  Vella, G.J., Paulsen, H. and Schachter, H. Control of glycoprotein synthesis. IX. A terminal Man alphal-3Man β1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: α-D-mannoside (GlcNAc to Man α1-3) β2-N-acetylglucosaminyltransferase I. Can. J. Biochem. Cell Biol. 62 (1984) 409–417. [PMID: 6235906]
8.  Unligil, U.M., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H. and Rini, J.M. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19 (2000) 5269–5280. [PMID: 11032794]
[EC 2.4.1.101 created 1983, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
*EC 2.4.1.143 – public review until 26 April 2018 [Last modified: 2018-04-04 08:14:18]
Accepted name: α-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Other name(s): MGAT2 (gene name); N-acetylglucosaminyltransferase II; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase II; acetylglucosaminyltransferase II; uridine diphosphoacetylglucosamine-mannoside α1→6-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-α-1,6-mannosylglycoprotein β-1-2-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-α-D-mannoside β1-2-acetylglucosaminyltransferase; UDP-GlcNAc:mannoside α1-6 acetylglucosaminyltransferase; α-1,6-mannosyl-glycoprotein β-1,2-N-acetylglucosaminyltransferase; GnTII; GlcNAc-T II; UDP-N-acetyl-D-glucosamine:6-(α-D-mannosyl)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→6)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. Its activity initiates the synthesis of the second antenna of di-antennary complex N-glycans. While the natural substrate (produced by EC 3.2.1.114, mannosyl-oligosaccharide 1,3-1,6-α-mannosidase) is described here, the minimal substrate recognized by the enzyme is α-D-Man-(1→6)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→3)]-β-D-Man-R.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 105913-04-0
References:
1.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J. Biol. Chem. 255 (1980) 4885–4893. [PMID: 6445358]
2.  Mendicino, J., Chandrasekaran, E.V., Anumula, K.R. and Davila, M. Isolation and properties of α-D-mannose:β-1,2-N-acetylglucosaminyltransferase from trachea mucosa. Biochemistry 20 (1981) 967–976. [PMID: 6452163]
3.  Oppenheimer, C.L., Eckhardt, A.E. and Hill, R.L. The nonidentity of porcine N-acetylglucosaminyltransferases I and II. J. Biol. Chem. 256 (1981) 11477–11482. [PMID: 6457827]
4.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
5.  Bendiak, B. and Schachter, H. Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:α-D-mannoside β-1-2 N-acetylglucosaminyltransferase II from rat liver. J. Biol. Chem. 262 (1987) 5784–5790. [PMID: 2952645]
6.  Bendiak, B. and Schacter, H. Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:α-D-mannoside β1-2 N-acetylglucosaminyltransferase II from rat liver. J. Biol. Chem. 262 (1987) 5775–5783. [PMID: 2952644]
7.  Tan, J., D'Agostaro, A.F., Bendiak, B., Reck, F., Sarkar, M., Squire, J.A., Leong, P. and Schachter, H. The human UDP-N-acetylglucosamine: α-6-D-mannoside-β-1,2- N-acetylglucosaminyltransferase II gene (MGAT2). Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein. Eur. J. Biochem. 231 (1995) 317–328. [PMID: 7635144]
[EC 2.4.1.143 created 1984, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
*EC 2.4.1.144 – public review until 26 April 2018 [Last modified: 2018-04-04 08:17:40]
Accepted name: β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-[β-D-GlcNAc-(1→4)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Other name(s): N-acetylglucosaminyltransferase III; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase III; uridine diphosphoacetylglucosamine-glycopeptide β4-acetylglucosaminyltransferase III; β-1,4-mannosyl-glycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTIII; GlcNAc-T III; MGAT3 (gene name); UDP-N-acetyl-D-glucosamine:β-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:β-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. The residue added by the enzyme at position 4 of the β-linked mannose of the trimannosyl core of N-glycans is known as a bisecting GlcNAc. Unlike GlcNAc residues added to other positions, it is not extended or modified. In addition, its presence prevents the action of other branching enzymes involved in the process such as GlcNAc-T IV (EC 2.4.1.145) and GlcNAc-T V (EC 2.4.1.155), and thus increased activity of GlcNAc-T III leads to a decrease in highly branched N-glycan structures.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 83744-93-8
References:
1.  Narasimhan, S. Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide β4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in β1-4 linkage to the β-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J. Biol. Chem. 257 (1982) 10235–10242. [PMID: 6213618]
2.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
3.  Brockhausen, I., Carver, J.P. and Schachter, H. Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. Biochem. Cell Biol. 66 (1988) 1134–1151. [PMID: 2975180]
4.  Nishikawa, A., Ihara, Y., Hatakeyama, M., Kangawa, K. and Taniguchi, N. Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine: β-D-mannoside β-1,4N-acetylglucosaminyltransferase III from rat kidney. J. Biol. Chem. 267 (1992) 18199–18204. [PMID: 1325461]
5.  Ihara, Y., Nishikawa, A., Tohma, T., Soejima, H., Niikawa, N. and Taniguchi, N. cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J. Biochem. 113 (1993) 692–698. [PMID: 8370666]
[EC 2.4.1.144 created 1984, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
*EC 2.4.1.145 – public review until 26 April 2018 [Last modified: 2018-04-04 08:18:01]
Accepted name: α-1,3-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Other name(s): N-acetylglucosaminyltransferase IV; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase IV; β-acetylglucosaminyltransferase IV; uridine diphosphoacetylglucosamine-glycopeptide β4-acetylglucosaminyltransferase IV; α-1,3-mannosylglycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTIV; UDP-N-acetyl-D-glucosamine:3-[2-(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl]-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires Mn2+. The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. By adding a glucosaminyl residue to biantennary N-linked glycans, it enables the synthesis of tri- and tetra-antennary complexes.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 86498-16-0
References:
1.  Gleeson, P.A. and Schachter, H. Control of glycoprotein synthesis. J. Biol. Chem. 258 (1983) 6162–6173. [PMID: 6222042]
2.  Oguri, S., Minowa, M.T., Ihara, Y., Taniguchi, N., Ikenaga, H. and Takeuchi, M. Purification and characterization of UDP-N-acetylglucosamine: α1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase-IV) from bovine small intestine. J. Biol. Chem. 272 (1997) 22721–22727. [PMID: 9278430]
3.  Minowa, M.T., Oguri, S., Yoshida, A., Hara, T., Iwamatsu, A., Ikenaga, H. and Takeuchi, M. cDNA cloning and expression of bovine UDP-N-acetylglucosamine: α1, 3-D-mannoside β1,4-N-acetylglucosaminyltransferase IV. J. Biol. Chem. 273 (1998) 11556–11562. [PMID: 9565571]
4.  Yoshida, A., Minowa, M.T., Takamatsu, S., Hara, T., Oguri, S., Ikenaga, H. and Takeuchi, M. Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: α1,3-d-mannoside β1, 4-N-acetylglucosaminyltransferase. Glycobiology 9 (1999) 303–310. [PMID: 10024668]
5.  Yoshida, A., Minowa, M.T., Takamatsu, S., Hara, T., Ikenaga, H. and Takeuchi, M. A novel second isoenzyme of the human UDP-N-acetylglucosamine:α1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment. Glycoconj. J. 15 (1998) 1115–1123. [PMID: 10372966]
6.  Takamatsu, S., Antonopoulos, A., Ohtsubo, K., Ditto, D., Chiba, Y., Le, D.T., Morris, H.R., Haslam, S.M., Dell, A., Marth, J.D. and Taniguchi, N. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice. Glycobiology 20 (2010) 485–497. [PMID: 20015870]
[EC 2.4.1.145 created 1984, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
*EC 2.4.1.195 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: N-hydroxythioamide S-β-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (Z)-2-phenyl-1-thioacetohydroximate = UDP + desulfoglucotropeolin
(2) UDP-α-D-glucose + an (E)-ω-(methylthio)alkyl-thiohydroximate = UDP + an aliphatic desulfoglucosinolate
(3) UDP-α-D-glucose + (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate = UDP + desulfoglucobrassicin
For diagram of glucotropeolin biosynthesis, click here
Glossary: an aliphatic desulfoglucosinolate = an ω-(methylthio)alkylhydroximate S-glucoside
Other name(s): UGT74B1 (gene name); desulfoglucosinolate-uridine diphosphate glucosyltransferase; uridine diphosphoglucose-thiohydroximate glucosyltransferase; thiohydroximate β-D-glucosyltransferase; UDPG:thiohydroximate glucosyltransferase; thiohydroximate S-glucosyltransferase; thiohydroximate glucosyltransferase; UDP-glucose:thiohydroximate S-β-D-glucosyltransferase; UDP-glucose:N-hydroxy-2-phenylethanethioamide S-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-hydroxy-2-phenylethanethioamide S-β-D-glucosyltransferase
Comments: The enzyme specifically glucosylates the thiohydroximate functional group. It is involved in the biosynthesis of glucosinolates in cruciferous plants, and acts on aliphatic, aromatic, and indolic substrates.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 9068-14-8
References:
1.  Jain, J.C., Reed, D.W., Groot Wassink, J.W.D. and Underhill, E.W. A radioassay of enzymes catalyzing the glucosylation and sulfation steps of glucosinolate biosynthesis in Brassica species. Anal. Biochem. 178 (1989) 137–140. [PMID: 2524977]
2.  Reed, D.W., Davin, L., Jain, J.C., Deluca, V., Nelson, L. and Underhill, E.W. Purification and properties of UDP-glucose:thiohydroximate glucosyltransferase from Brassica napus L. seedlings. Arch. Biochem. Biophys. 305 (1993) 526–532. [PMID: 8373190]
3.  Marillia, E.F., MacPherson, J.M., Tsang, E.W., Van Audenhove, K., Keller, W.A. and GrootWassink, J.W. Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli. Physiol. Plant 113 (2001) 176–184. [PMID: 12060294]
4.  Fahey, J.W., Zalcmann, A.T. and Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56 (2001) 5–51. [PMID: 11198818]
5.  Grubb, C.D., Zipp, B.J., Ludwig-Muller, J., Masuno, M.N., Molinski, T.F. and Abel, S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 40 (2004) 893–908. [PMID: 15584955]
[EC 2.4.1.195 created 1992, modified 2006, modified 2018]
 
 
*EC 2.4.1.201 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: α-1,6-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein n-acetylglucosaminyltransferases, click here
Other name(s): MGAT4C (gene name); N-acetylglucosaminyltransferase VI; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase VI; uridine diphosphoacetylglucosamine-glycopeptide β-1→4-acetylglucosaminyltransferase VI; mannosyl-glycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTVI; GlcNAc-T VI; UDP-N-acetyl-D-glucosamine:2,6-bis(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→6)-[N-acetyl-β-D-glucosaminyl-(1→2)]-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires a high concentration of Mn2+ for maximal activity. The enzyme, characterized from hen oviduct membranes, participates in the processing of N-glycans in the Golgi apparatus. It transfers GlcNAc in β1-4 linkage to a D-mannose residue that already has GlcNAc residues attached at positions 2 and 6 by β linkages. No homologous enzyme appears to exist in mammals.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 119699-68-2
References:
1.  Brockhausen, I., Hull, E., Hindsgaul, O., Schachter, H., Shah, R.N., Michnick, S.W. and Carver, J.P. Control of glycoprotein synthesis. Detection and characterization of a novel branching enzyme from hen oviduct, UDP-N-acetylglucosamine:GlcNAc β1-6 (GlcNAc β1-2)Man α-R (GlcNAc to Man) β-4-N-acetylglucosaminyltransferase VI. J. Biol. Chem. 264 (1989) 11211–11221. [PMID: 2525556]
2.  Taguchi, T., Ogawa, T., Inoue, S., Inoue, Y., Sakamoto, Y., Korekane, H. and Taniguchi, N. Purification and characterization of UDP-GlcNAc:GlcNAcβ1-6(GlcNAcβ1-2)Manα1-R [GlcNAc to Man]-β1,4-N-acetylglucosaminyltransferase VI from hen oviduct. J. Biol. Chem. 275 (2000) 32598–32602. [PMID: 10903319]
3.  Sakamoto, Y., Taguchi, T., Honke, K., Korekane, H., Watanabe, H., Tano, Y., Dohmae, N., Takio, K., Horii, A. and Taniguchi, N. Molecular cloning and expression of cDNA encoding chicken UDP-N-acetyl-D-glucosamine (GlcNAc): GlcNAcβ 1-6(GlcNAcβ 1-2)- manα 1-R[GlcNAc to man]β 1,4N-acetylglucosaminyltransferase VI. J. Biol. Chem. 275 (2000) 36029–36034. [PMID: 10962001]
[EC 2.4.1.201 created 1992, modified 2001, modified 2018]
 
 
EC 2.4.1.353 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: sordaricin 6-deoxyaltrosyltransferase
Reaction: GDP-6-deoxy-α-D-altrose + sordaricin = 4′-O-demethylsordarin + GDP
Glossary: sordaricin = (1R,3aR,4S,4aR,7R,7aR,8aR)-4-formyl-8a-(hydroxymethyl)-7-methyl-3-(propan-2-yl)-1,3a,4,4a,5,6,7,7a,8,8-decahydro-1,4-methanocyclopenta[f]indene-3a-carboxylic acid
Other name(s): SdnJ
Systematic name: GDP-6-deoxy-α-D-altrose:sordaricin 6-deoxy-D-altrosyltransferase
Comments: The enzyme, isolated from the fungus Sordaria araneosa, is involved in the biosynthesis of the glycoside antibiotic sordarin.
References:
1.  Kudo, F., Matsuura, Y., Hayashi, T., Fukushima, M. and Eguchi, T. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J. Antibiot. (Tokyo) 69 (2016) 541–548. [PMID: 27072286]
[EC 2.4.1.353 created 2018]
 
 
EC 2.4.1.354 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: (R)-mandelonitrile β-glucosyltransferase
Reaction: UDP-α-D-glucose + (R)-mandelonitrile = UDP + (R)-prunasin
Glossary: (R)-mandelonitrile = (2R)-hydroxy(phenyl)acetonitrile
(R)-prunasin = (2R)-(β-D-glucosyloxy)(phenyl)acetonitrile
Other name(s): UGT85A19 (gene name)
Systematic name: UDP-α-D-glucose:(R)-mandelonitrile β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from Prunus dulcis (almond), is involved in the biosynthesis of the cyanogenic glycosides (R)-prunasin and (R)-amygdalin.
References:
1.  Franks, T. K., Yadollahi, A., Wirthensohn, M. G., Guerin, J. R., Kaiser, B. N., Sedgley, M. and Ford, C. M. A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels. Funct. Plant Biol. 35 (2008) 236–246.
[EC 2.4.1.354 created 2018]
 
 
EC 2.4.1.355 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: poly(ribitol-phosphate) β-N-acetylglucosaminyltransferase
Reaction: n UDP-N-acetyl-α-D-glucosamine + 4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-(2-N-acetyl-β-D-glucosaminyl-D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarS
Systematic name: UDP-N-acetyl-α-D-glucosamine:4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of poly(ribitol-phosphate) teichoic acids in the cell wall of the bacterium Staphylococcus aureus. This enzyme adds an N-acetyl-β-D-glucosamine to the OH group at the 2 position of the ribitol phosphate units. cf. EC 2.4.1.70 [poly(ribitol-phosphate) α-N-acetylglucosaminyltransferase].
References:
1.  Nathenson, S. G., Strominger, J. L. Enzymatic synthesis of N-acetylglucosaminylribitol linkages in teichoic acid from Staphylococcus aureus, strain Copenhagen. J. Biol. Chem. 238 (1963) 3161–3169. [PMID: 14085356]
2.  Brown, S., Xia, G., Luhachack, L.G., Campbell, J., Meredith, T.C., Chen, C., Winstel, V., Gekeler, C., Irazoqui, J.E., Peschel, A. and Walker, S. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl Acad. Sci. USA 109 (2012) 18909–18914. [PMID: 23027967]
3.  Sobhanifar, S., Worrall, L.J., King, D.T., Wasney, G.A., Baumann, L., Gale, R.T., Nosella, M., Brown, E.D., Withers, S.G. and Strynadka, N.C. Structure and mechanism of Staphylococcus aureus TarS, the wall teichoic acid β-glycosyltransferase involved in methicillin resistance. PLoS Pathog. 12:e1006067 (2016). [PMID: 27973583]
[EC 2.4.1.355 created 2018]
 
 
EC 2.4.2.59 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: sulfide-dependent adenosine diphosphate thiazole synthase
Reaction: NAD+ + glycine + sulfide = nicotinamide + ADP-5-ethyl-4-methylthiazole-2-carboxylate + 3 H2O
Other name(s): Thi4 (ambiguous)
Systematic name: NAD+:glycine ADP-D-ribosyltransferase (sulfide-adding)
Comments: This iron dependent enzyme, found in archaea, is involved in the biosynthesis of thiamine phosphate. The homologous enzyme from plants and fungi (EC 2.4.2.60, cysteine-dependent adenosine diphosphate thiazole synthase) uses an intrinsic cysteine as sulfur donor and, unlike the archaeal enzyme, is a single turn-over enzyme.
References:
1.  Zhang, X., Eser, B.E., Chanani, P.K., Begley, T.P. and Ealick, S.E. Structural basis for iron-mediated sulfur transfer in archael and yeast thiazole synthases. Biochemistry 55 (2016) 1826–1838. [PMID: 26919468]
2.  Eser, B.E., Zhang, X., Chanani, P.K., Begley, T.P. and Ealick, S.E. From suicide enzyme to catalyst: the iron-dependent sulfide transfer in Methanococcus jannaschii thiamin thiazole biosynthesis. J. Am. Chem. Soc. 138 (2016) 3639–3642. [PMID: 26928142]
[EC 2.4.2.59 created 2018]
 
 
EC 2.4.2.60 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: cysteine-dependent adenosine diphosphate thiazole synthase
Reaction: NAD+ + glycine + [ADP-thiazole synthase]-L-cysteine = nicotinamide + ADP-5-ethyl-4-methylthiazole-2-carboxylate + [ADP-thiazole synthase]-dehydroalanine + 3 H2O
Other name(s): THI4 (gene name) (ambiguous); THI1 (gene name); ADP-thiazole synthase
Systematic name: NAD+:glycine ADP-D-ribosyltransferase (dehydroalanine-producing)
Comments: This iron dependent enzyme, found in fungi and plants, is involved in the thiamine phosphate biosynthesis pathway. It is a single turn-over enzyme since the cysteine residue is not regenerated in vivo [3]. The homologous enzyme in archaea (EC 2.4.2.59, sulfide-dependent adenosine diphosphate thiazole synthase) uses sulfide as sulfur donor.
References:
1.  Godoi, P.H., Galhardo, R.S., Luche, D.D., Van Sluys, M.A., Menck, C.F. and Oliva, G. Structure of the thiazole biosynthetic enzyme THI1 from Arabidopsis thaliana. J. Biol. Chem. 281 (2006) 30957–30966. [PMID: 16912043]
2.  Chatterjee, A., Abeydeera, N.D., Bale, S., Pai, P.J., Dorrestein, P.C., Russell, D.H., Ealick, S.E. and Begley, T.P. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature 478 (2011) 542–546. [PMID: 22031445]
3.  Zhang, X., Eser, B.E., Chanani, P.K., Begley, T.P. and Ealick, S.E. Structural basis for iron-mediated sulfur transfer in archael and yeast thiazole synthases. Biochemistry 55 (2016) 1826–1838. [PMID: 26919468]
[EC 2.4.2.60 created 2018]
 
 
EC 2.5.1.143 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: pyridinium-3,5-biscarboxylic acid mononucleotide synthase
Reaction: deamido-NAD+ + hydrogencarbonate = AMP + pyridinium-3,5-biscarboxylate mononucleotide
Other name(s): LarB; P2CMN synthase; nicotinic acid adenine dinucleotide carboxylase/hydrolase; NaAD carboxylase/hydrolase
Systematic name: deamido-NAD+:hydrogencarbonate nicotinate-β-D-ribonucleotidyltransferase
Comments: This enzyme, found in the bacterium Lactobacillus plantarum, is involved in the biosynthesis of a nickel-pincer cofactor. It carboxylates the pyridinium ring of deamido-NAD+ and cleaves the phosphoanhydride bond to release AMP and generate pyridinium-3,5-biscarboxylic acid mononucleotide (P2CMN).
References:
1.  Desguin, B., Soumillion, P., Hols, P. and Hausinger, R.P. Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion. Proc. Natl Acad. Sci. USA 113 (2016) 5598–5603. [PMID: 27114550]
[EC 2.5.1.143 created 2018]
 
 
*EC 2.7.1.209 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: L-erythrulose 1-kinase
Reaction: ATP + L-erythrulose = ADP + L-erythrulose 1-phosphate
Other name(s): lerK (gene name); L-erythrulose 1-kinase [incorrect]
Systematic name: ATP:L-erythrulose 1-phosphotransferase
Comments: The enzyme, characterized from the bacterium Mycobacterium smegmatis, participates in the degradation of L-threitol.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc
References:
1.  Huang, H., Carter, M.S., Vetting, M.W., Al-Obaidi, N., Patskovsky, Y., Almo, S.C. and Gerlt, J.A. A general strategy for the discovery of metabolic pathways: D-threitol, L-threitol, and erythritol utilization in Mycobacterium smegmatis. J. Am. Chem. Soc. 137 (2015) 14570–14573. [PMID: 26560079]
2.  Huang, H., Carter, M.S., Vetting, M.W., Al-Obaidi, N., Patskovsky, Y., Almo, S.C. and Gerlt, J.A. Correction to "A general strategy for the discovery of metabolic pathways: D-threitol, L-threitol, and erythritol utilization in Mycobacterium smegmatis". J. Am. Chem. Soc. 138:4267 (2016). [PMID: 26978037]
[EC 2.7.1.209 created 2016, modified 2018]
 
 
*EC 2.8.1.8 – public review until 26 April 2018 [Last modified: 2018-04-05 02:59:15]
Accepted name: lipoyl synthase
Reaction: [protein]-N6-(octanoyl)-L-lysine + an [Fe-S] cluster scaffold protein carrying a [4Fe-4S]2+ cluster + 2 S-adenosyl-L-methionine + 2 oxidized [2Fe-2S] ferredoxin + 6 H+ = [protein]-N6-[(R)-dihydrolipoyl]-L-lysine + an [Fe-S] cluster scaffold protein + 2 sulfide + 4 Fe3+ + 2 L-methionine + 2 5′-deoxyadenosine + 2 reduced [2Fe-2S] ferredoxin
Other name(s): lipA (gene name); LS; lipoate synthase; protein 6-N-(octanoyl)lysine:sulfur sulfurtransferase; protein N6-(octanoyl)lysine:sulfur sulfurtransferase; protein N6-(octanoyl)lysine:sulfur-(sulfur carrier) sulfurtransferase
Systematic name: [protein]-N6-(octanoyl)-L-lysine:an [Fe-S] cluster scaffold protein carrying a [4Fe-4S]2+ cluster sulfurtransferase
Comments: This enzyme catalyses the final step in the de-novo biosynthesis of the lipoyl cofactor, the attachment of two sulfhydryl groups to C6 and C8 of a pendant octanoyl chain. It is a member of the ‘AdoMet radical’ (radical SAM) family, all members of which produce the 5′-deoxyadenosin-5′-yl radical and methionine from AdoMet (S-adenosylmethionine) by the addition of an electron from an iron-sulfur centre. The enzyme contains two [4Fe-4S] clusters. The first cluster produces the radicals, which are converted into 5′-deoxyadenosine when they abstract hydrogen atoms from C6 and C8, respectively, leaving reactive radicals at these positions that interact with sulfur atoms within the second (auxiliary) cluster. Having donated two sulfur atoms, the auxiliary cluster is degraded during catalysis, but is regenerated immediately by the transfer of a new cluster from iron-sulfur cluster carrier proteins [8]. Lipoylation is essential for the function of several key enzymes involved in oxidative metabolism, as it converts apoprotein into the biologically active holoprotein. Examples of such lipoylated proteins include pyruvate dehydrogenase (E2 domain), 2-oxoglutarate dehydrogenase (E2 domain), the branched-chain 2-oxoacid dehydrogenases and the glycine cleavage system (H protein) [1,2]. An alternative lipoylation pathway involves EC 6.3.1.20, lipoate—protein ligase, which can lipoylate apoproteins using exogenous lipoic acid (or its analogues) [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 189398-80-9
References:
1.  Cicchillo, R.M. and Booker, S.J. Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J. Am. Chem. Soc. 127 (2005) 2860–2861. [PMID: 15740115]
2.  Vanden Boom, T.J., Reed, K.E. and Cronan, J.E., Jr. Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. J. Bacteriol. 173 (1991) 6411–6420. [PMID: 1655709]
3.  Zhao, X., Miller, J.R., Jiang, Y., Marletta, M.A. and Cronan, J.E. Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem. Biol. 10 (2003) 1293–1302. [PMID: 14700636]
4.  Cicchillo, R.M., Iwig, D.F., Jones, A.D., Nesbitt, N.M., Baleanu-Gogonea, C., Souder, M.G., Tu, L. and Booker, S.J. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43 (2004) 6378–6386. [PMID: 15157071]
5.  Jordan, S.W. and Cronan, J.E., Jr. A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J. Biol. Chem. 272 (1997) 17903–17906. [PMID: 9218413]
6.  Miller, J.R., Busby, R.W., Jordan, S.W., Cheek, J., Henshaw, T.F., Ashley, G.W., Broderick, J.B., Cronan, J.E., Jr. and Marletta, M.A. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry 39 (2000) 15166–15178. [PMID: 11106496]
7.  Perham, R.N. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69 (2000) 961–1004. [PMID: 10966480]
8.  McCarthy, E.L. and Booker, S.J. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 358 (2017) 373–377. [PMID: 29051382]
[EC 2.8.1.8 created 2006, modified 2014, modified 2018]
 
 
*EC 3.2.1.106 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: mannosyl-oligosaccharide glucosidase
Reaction: Glc3Man9GlcNAc2-[protein] + H2O = Glc2Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc3Man9GlcNAc2 = [α-D-Glc-(1→2)-α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Glc2Man9GlcNAc2-[protein] = [α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Other name(s): Glc3Man9NAc2 oligosaccharide glucosidase; trimming glucosidase I; CWH41 (gene name); MOGS (gene name); mannosyl-oligosaccharide glucohydrolase
Systematic name: Glc3Man9GlcNAc2-[protein] glucohydrolase (configuration-inverting)
Comments: This enzyme catalyses the first step in the processing of the N-glycan tetradecasaccharide precursor Glc3Man9GlcNAc2, which takes place in the endoplasmic reticulum, by removing the distal α-1,2-linked glucose residue. This and subsequent processing steps are required before complex N-glycans can be synthesized.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 78413-07-7
References:
1.  Elting, J.J., Chen, W.W. and Lennarz, J. Characterization of a glucosidase involved in an initial step in the processing of oligosaccharide chains. J. Biol. Chem. 255 (1980) 2325–2331. [PMID: 7358674]
2.  Grinna, L.S. and Robbins, P.W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J. Biol. Chem. 254 (1979) 8814–8818. [PMID: 479161]
3.  Kilker, R.D., Saunier, B., Tkacz, J.S. and Herscovics, A. Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J. Biol. Chem. 256 (1981) 5299–5603. [PMID: 7014569]
4.  Grinna, L.S. and Robbins, P.W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J. Biol. Chem. 255 (1980) 2255–2258. [PMID: 7358666]
5.  Mark, M.J. and Kornfeld, S. Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. Arch. Biochem. Biophys. 199 (1980) 249–258. [PMID: 7356331]
[EC 3.2.1.106 created 1984, modified 2018]
 
 
*EC 3.2.1.114 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: mannosyl-oligosaccharide 1,3-1,6-α-mannosidase
Reaction: Man5GlcNAc3-[protein] + 2 H2O = Man3GlcNAc3-[protein] + 2 α-D-mannopyranose
For diagram of mannosyl-glycoprotein n-acetylglucosaminyltransferases, click here
Glossary: Man5GlcNAc3-[protein] = [β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Man3GlcNAc3-[protein] = {β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Other name(s): MAN2A1 (gene name); MAN2A2 (gene name); mannosidase II; exo-1,3-1,6-α-mannosidase; α-D-mannosidase II; α-mannosidase II; α1-3,6-mannosidase; GlcNAc transferase I-dependent α1,3[α1,6]mannosidase; Golgi α-mannosidase II; ManII; 1,3(1,6)-α-D-mannosidase; 1,3-(1,6-)mannosyl-oligosaccharide α-D-mannohydrolase; (1→3)-(1→6)-mannosyl-oligosaccharide α-D-mannohydrolase
Systematic name: (1→3)-(1→6)-mannosyl-oligosaccharide α-D-mannohydrolase (configuration-retaining)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. It removes two mannosyl residues, one linked by α1,3 linkage, and the other linked by α1,6 linkage, both of which are removed by the same catalytic site. The enzyme is sensitive to swainsonine.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, PDB, CAS registry number: 82047-77-6
References:
1.  Tulsiani, D.R.P., Opheim, D.J. and Touster, O. Purification and characterization of α-D-mannosidase from rat liver golgi membranes. J. Biol. Chem. 252 (1977) 3227–3233. [PMID: 863880]
2.  Tabas, I. and Kornfeld, S. The synthesis of complex-type oligosaccharides. III. Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J. Biol. Chem. 253 (1978) 7779–7786. [PMID: 212436]
3.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: α-D-mannoside β2-N-acetylglucosaminyltransferase I. J. Biol. Chem. 255 (1980) 4894–4902. [PMID: 6445359]
4.  Tulsiani, D.R.P., Hubbard, S.C., Robbins, P.W. and Touster, O. α-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases IA and IB are the enzymes converting Man9 precursors to Man5 intermediates. J. Biol. Chem. 257 (1982) 3660–3668. [PMID: 7061502]
5.  Moremen, K.W. and Robbins, P.W. Isolation, characterization, and expression of cDNAs encoding murine α-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J. Cell Biol. 115 (1991) 1521–1534. [PMID: 1757461]
6.  Misago, M., Liao, Y.F., Kudo, S., Eto, S., Mattei, M.G., Moremen, K.W. and Fukuda, M.N. Molecular cloning and expression of cDNAs encoding human α-mannosidase II and a previously unrecognized α-mannosidase IIx isozyme. Proc. Natl Acad. Sci. USA 92 (1995) 11766–11770. [PMID: 8524845]
7.  van den Elsen, J.M., Kuntz, D.A. and Rose, D.R. Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 20 (2001) 3008–3017. [PMID: 11406577]
8.  Athanasopoulos, V.I., Niranjan, K. and Rastall, R.A. The production, purification and characterisation of two novel α-D-mannosidases from Aspergillus phoenicis. Carbohydr. Res. 340 (2005) 609–617. [PMID: 15721331]
9.  Shah, N., Kuntz, D.A. and Rose, D.R. Golgi α-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc. Natl Acad. Sci. USA 105 (2008) 9570–9575. [PMID: 18599462]
10.  Rose, D.R. Structure, mechanism and inhibition of Golgi α-mannosidase II. Curr. Opin. Struct. Biol. 22 (2012) 558–562. [PMID: 22819743]
[EC 3.2.1.114 created 1986, modified 2018]
 
 
EC 3.2.1.207 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: mannosyl-oligosaccharide α-1,3-glucosidase
Reaction: (1) Glc2Man9GlcNAc2-[protein] + H2O = GlcMan9GlcNAc2-[protein] + β-D-glucopyranose
(2) GlcMan9GlcNAc2-[protein] + H2O = Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc2Man9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
GlcMan9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Man9GlcNAc2-[protein] = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Other name(s): ER glucosidase II; α-glucosidase II; trimming glucosidase II; ROT2 (gene name); GTB1 (gene name); GANAB (gene name); PRKCSH (gene name)
Systematic name: Glc2Man9GlcNAc2-[protein] 3-α-glucohydrolase (configuration-inverting)
Comments: This eukaryotic enzyme cleaves off sequentially the two α-1,3-linked glucose residues from the Glc2Man9GlcNAc2 oligosaccharide precursor of immature N-glycosylated proteins.
References:
1.  Trombetta, E.S., Simons, J.F. and Helenius, A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271 (1996) 27509–27516. [PMID: 8910335]
2.  Ziak, M., Meier, M., Etter, K.S. and Roth, J. Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells. Biochem. Biophys. Res. Commun. 280 (2001) 363–367. [PMID: 11162524]
3.  Wilkinson, B.M., Purswani, J. and Stirling, C.J. Yeast GTB1 encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum. J. Biol. Chem. 281 (2006) 6325–6333. [PMID: 16373354]
4.  Mora-Montes, H.M., Bates, S., Netea, M.G., Diaz-Jimenez, D.F., Lopez-Romero, E., Zinker, S., Ponce-Noyola, P., Kullberg, B.J., Brown, A.J., Odds, F.C., Flores-Carreon, A. and Gow, N.A. Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6 (2007) 2184–2193. [PMID: 17933909]
[EC 3.2.1.207 created 2018]
 
 
EC 3.5.1.128 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: deaminated glutathione amidase
Reaction: N-(4-oxoglutaryl)-L-cysteinylglycine + H2O = 2-oxoglutarate + L-cysteinylglycine
Glossary: N-(4-oxoglutaryl)-L-cysteinylglycine = deaminated glutathione
Other name(s): dGSH deaminase; NIT1 (gene name)
Systematic name: N-(4-oxoglutaryl)-L-cysteinylglycine amidohydrolase
Comments: The enzyme, present in animals, fungi and bacteria, is involved in clearing cells of the toxic compound deaminated glutathione, which can be produced as an unwanted side product by several transaminases.
References:
1.  Peracchi, A., Veiga-da-Cunha, M., Kuhara, T., Ellens, K.W., Paczia, N., Stroobant, V., Seliga, A.K., Marlaire, S., Jaisson, S., Bommer, G.T., Sun, J., Huebner, K., Linster, C.L., Cooper, A.JL. and Van Schaftingen, E. Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc. Natl Acad. Sci. USA 114 (2017) E3233–E3242. [PMID: 28373563]
[EC 3.5.1.128 created 2018]
 
 
*EC 3.7.1.4 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: phloretin hydrolase
Reaction: phloretin + H2O = phloretate + phloroglucinol
Glossary: phloretin = 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one
phloretate = 3-(4-hydroxyphenyl)propanoate
phloroglucinol = benzene-1,3,5-triol
Other name(s): ErPhy; lactase-phlorerin hydrolase; C-acylphenol hydrolase; 2′,4,4′,6′-tetrahydroxydehydrochalcone 1,3,5-trihydroxybenzenehydrolase (incorrect)
Systematic name: phloretin acylhydrolase (phloroglucinol forming)
Comments: Also hydrolyses other C-acylated phenols related to phloretin. Isolated from the fungus Aspergillus niger and the bacteria Pantoea agglomerans and Eubacterium ramulus.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, MetaCyc, CAS registry number: 37289-38-6
References:
1.  Chatterjee, A.K. and Gibbins, L.N. Metabolism of phloridzin by Erwinia herbicola: nature of the degradation products, and the purification and properties of phloretin hydrolase. J. Bacteriol. 100 (1969) 594–600. [PMID: 5354935]
2.  Minamikawa, T., Jayasankar, N.P., Bohm, B.A., Taylor, I.E. and Towers, G.H. An inducible hydrolase from Aspergillus niger, acting on carbon-carbon bonds, for phlorrhizin and other C-acylated phenols. Biochem. J. 116 (1970) 889–897. [PMID: 5441377]
3.  Schoefer, L., Braune, A. and Blaut, M. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme. Appl. Environ. Microbiol. 70 (2004) 6131–6137. [PMID: 15466559]
[EC 3.7.1.4 created 1972, modified 2018]
 
 
EC 5.3.3.22 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: lutein isomerase
Reaction: lutein = meso-zeaxanthin
Glossary: lutein = (3R,3′R)-dihydroxy-α-carotene
meso-zeaxanthin = (3R,3′S)-β,β-carotene-3,3′-diol
Other name(s): RPE65 (gene name); meso-zeaxanthin isomerase
Systematic name: lutein Δ45-isomerase
Comments: The enzyme is found in the retinal pigment epithelium (RPE) of vertebrates. It also has the activity of EC 3.1.1.64, retinoid isomerohydrolase.
References:
1.  Shyam, R., Gorusupudi, A., Nelson, K., Horvath, M.P. and Bernstein, P.S. RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. Proc. Natl Acad. Sci. USA 114 (2017) 10882–10887. [PMID: 28874556]
[EC 5.3.3.22 created 2018]
 
 
EC 5.5.1.31 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: hapalindole H synthase
Reaction: 3-geranyl-3-[(Z)-2-isocyanoethenyl]-1H-indole = hapalindole H
Glossary: hapalindole H = (6aR,9R,10R,10aR)-9-ethenyl-1-isocyano-6,6,9-trimethyl-2,6,6a,7,8,9,10,10a-decahydronaphtho[1,2,3-cd]indole
Other name(s): famC2 (gene name); famC3 (gene name)
Systematic name: 3-geranyl-3-[(Z)-2-isocyanoethenyl]-1H-indole cyclase (hapalindole H-forming)
Comments: The enzyme, characterized from the cyanobacterium Fischerella ambigua UTEX 1903, forms the core structure of the hapalindole family of alkaloids. The enzyme is a heterodimeric complex.
References:
1.  Li, S., Lowell, A.N., Newmister, S.A., Yu, F., Williams, R.M. and Sherman, D.H. Decoding cyclase-dependent assembly of hapalindole and fischerindole alkaloids. Nat. Chem. Biol. 13 (2017) 467–469. [PMID: 28288107]
[EC 5.5.1.31 created 2018]
 
 
EC 5.5.1.32 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 12-epi-hapalindole U synthase
Reaction: 3-geranyl-3-[(Z)-2-isocyanoethenyl]-1H-indole = 12-epi-hapalindole U
Glossary: 12-epi-hapalindole H = (6aR,9S,10R,10aR)-9-ethenyl-1-isocyano-6,6,9-trimethyl-2,6,6a,7,8,9,10,10a-decahydronaphtho[1,2,3-cd]indole
Other name(s): famC1 (gene name); HpiC1 (gene name)
Systematic name: 3-geranyl-3-[(Z)-2-isocyanoethenyl]-1H-indole cyclase (12-epi-hapalindole U-forming)
Comments: The enzyme, characterized from the cyanobacterium Fischerella ambigua UTEX 1903, forms the core structure of the 12-epi-hapalindole family of alkaloids.
References:
1.  Li, S., Lowell, A.N., Yu, F., Raveh, A., Newmister, S.A., Bair, N., Schaub, J.M., Williams, R.M. and Sherman, D.H. Hapalindole/ambiguine biogenesis Is mediated by a Cope rearrangement, C-C bond-forming cascade. J. Am. Chem. Soc. 137 (2015) 15366–15369. [PMID: 26629885]
[EC 5.5.1.32 created 2018]
 
 
EC 5.5.1.33 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: 12-epi-fischerindole U synthase
Reaction: 3-geranyl-3-[(Z)-2-isocyanoethenyl]-1H-indole = 12-epi-fischerindole U
Glossary: 12-epi-fischerindole U = (6aS,9S,10R,10aS)-9-ethenyl-10-isocyano-6,6,9-trimethyl-5H,6aH,7H,8H,10H,10aH-indeno[2,1-b]indole
Other name(s): fisC (gene name); fimC5 (gene name)
Systematic name: 3-geranyl-3-[(Z)-2-isocyanoethenyl]-1H-indole cyclase (12-epi-fischerindole U-forming)
Comments: The enzyme, characterized from multiple species of the cyanobacterial genus Fischerella, participates in the biosynthesis of the terpenoid indole alkaloids 12-epi-fischerindoles.
References:
1.  Li, S., Lowell, A.N., Newmister, S.A., Yu, F., Williams, R.M. and Sherman, D.H. Decoding cyclase-dependent assembly of hapalindole and fischerindole alkaloids. Nat. Chem. Biol. 13 (2017) 467–469. [PMID: 28288107]
[EC 5.5.1.33 created 2018]
 
 
EC 6.2.1.53 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: L-proline—[L-prolyl-carrier protein] ligase
Reaction: ATP + L-proline + holo-[L-prolyl-carrier protein] = AMP + diphosphoate + L-prolyl-[L-prolyl-carrier protein] (overall reaction)
(1a) ATP + L-proline = diphosphate + (L-prolyl)adenylate
(1b) (L-prolyl)adenylate + holo-[L-prolyl-carrier protein] = AMP + L-prolyl-[L-prolyl-carrier protein]
Other name(s): pltF (gene name); bmp4 (gene name); pigI (gene name)
Systematic name: L-proline:[L-prolyl-carrier protein] ligase (AMP-forming)
Comments: The enzyme participates in the biosynthesis of several pyrrole-containing compounds, such as undecylprodigiosin, prodigiosin, pyoluteorin, and coumermycin A1. It catalyses the activation of L-proline to an adenylate form, followed by its transfer to the 4′-phosphopantheine moiety of an L-prolyl-carrier protein.
References:
1.  Thomas, M.G., Burkart, M.D. and Walsh, C.T. Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem. Biol. 9 (2002) 171–184. [PMID: 11880032]
2.  Harris, A.K., Williamson, N.R., Slater, H., Cox, A., Abbasi, S., Foulds, I., Simonsen, H.T., Leeper, F.J. and Salmond, G.P. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150 (2004) 3547–3560. [PMID: 15528645]
3.  Williamson, N.R., Simonsen, H.T., Ahmed, R.A., Goldet, G., Slater, H., Woodley, L., Leeper, F.J. and Salmond, G.P. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol. 56 (2005) 971–989. [PMID: 15853884]
[EC 6.2.1.53 created 2018]
 
 
EC 6.2.1.54 – public review until 26 April 2018 [Last modified: 2018-03-29 07:40:24]
Accepted name: D-alanine—[D-alanyl-carrier protein] ligase
Reaction: ATP + D-alanine + holo-[D-alaninyl-carrier protein] = AMP + diphosphate + D-alanyl-[D-alanyl-carrier protein] (overall reaction)
(1a) ATP + D-alanine = (D-alanyl)adenylate + diphosphate
(1b) (D-alanyl)adenylate + holo-[D-alanyl-carrier protein] = AMP + D-alanyl-[D-alanyl-carrier protein]
Other name(s): dltA (gene name); Dcl
Systematic name: D-alanine:[D-alanyl-carrier protein] ligase
Comments: The enzyme is involved in the modification of wall teichoic acids, as well as type I and IV lipoteichoic acids, with D-alanine residues. It activates D-alanine using ATP to form a high-energy (D-alanyl)adenylate intermediate and subsequently transfers the alanyl moiety to the phosphopantheinyl prosthetic group of a D-alanyl-carrier protein (DltC).
References:
1.  Perego, M., Glaser, P., Minutello, A., Strauch, M.A., Leopold, K. and Fischer, W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J. Biol. Chem. 270 (1995) 15598–15606. [PMID: 7797557]
2.  Yonus, H., Neumann, P., Zimmermann, S., May, J.J., Marahiel, M.A. and Stubbs, M.T. Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J. Biol. Chem. 283 (2008) 32484–32491. [PMID: 18784082]
3.  Du, L., He, Y. and Luo, Y. Crystal structure and enantiomer selection by D-alanyl carrier protein ligase DltA from Bacillus cereus. Biochemistry 47 (2008) 11473–11480. [PMID: 18847223]
4.  Osman, K.T., Du, L., He, Y. and Luo, Y. Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP. J. Mol. Biol. 388 (2009) 345–355. [PMID: 19324056]
[EC 6.2.1.54 created 2018]
 
 


Data © 2001–2018 IUBMB
Web site © 2005–2018 Andrew McDonald