The Enzyme Database

Your query returned 17 entries.    printer_iconPrintable version

EC 2.8.4.5     Relevance: 100%
Accepted name: tRNA (N6-L-threonylcarbamoyladenosine37-C2)-methylthiotransferase
Reaction: N6-L-threonylcarbamoyladenine37 in tRNA + sulfur-(sulfur carrier) + 2 S-adenosyl-L-methionine + reduced electron acceptor = 2-(methylsulfanyl)-N6-L-threonylcarbamoyladenine37 in tRNA + S-adenosyl-L-homocysteine + (sulfur carrier) + L-methionine + 5′-deoxyadenosine + electron acceptor (overall reaction)
(1a) N6-L-threonylcarbamoyladenine37 in tRNA + sulfur-(sulfur carrier) + S-adenosyl-L-methionine + reduced electron acceptor = 2-sulfanyl-N6-L-threonylcarbamoyladenine37 in tRNA + (sulfur carrier) + L-methionine + 5′-deoxyadenosine + electron acceptor
(1b) S-adenosyl-L-methionine + 2-sulfanyl-N6-L-threonylcarbamoyladenine37 in tRNA = S-adenosyl-L-homocysteine + 2-(methylsulfanyl)-N6-L-threonylcarbamoyladenine37 in tRNA
For diagram of N6-L-Threonylcarbamoyladenosine37 modified tRNA biosynthesis, click here
Glossary: N6-L-threonylcarbamoyladenine37 = t6A37
2-sulfanyl-N6-L-threonylcarbamoyladenine37 = ms2t6A37
Other name(s): MtaB; methylthio-threonylcarbamoyl-adenosine transferase B; CDKAL1 (gene name); tRNA (N6-L-threonylcarbamoyladenosine37):sulfur-(sulfur carrier),S-adenosyl-L-methionine C2-methylthiotransferase
Systematic name: tRNA (N6-L-threonylcarbamoyladenosine37):sulfur-(sulfur carrier),S-adenosyl-L-methionine C2-(methylsulfanyl)transferase
Comments: The enzyme, which is a member of the S-adenosyl-L-methionine-dependent radical (radical AdoMet) enzymes superfamily, binds two [4Fe-4S] clusters as well as the transferred sulfur. The sulfur donor is believed to be one of the [4Fe-4S] clusters, which is sacrificed in the process, so that in vitro the reaction is a single turnover. The identity of the electron donor is not known.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Arragain, S., Handelman, S.K., Forouhar, F., Wei, F.Y., Tomizawa, K., Hunt, J.F., Douki, T., Fontecave, M., Mulliez, E. and Atta, M. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem. 285 (2010) 28425–28433. [DOI] [PMID: 20584901]
[EC 2.8.4.5 created 2014, modified 2015]
 
 
EC 5.3.3.23     Relevance: 94.3%
Accepted name: S-methyl-5-thioribulose 1-phosphate isomerase
Reaction: (1) S-methyl-5-thio-D-ribulose 1-phosphate = S-methyl-1-thio-D-xylulose 5-phosphate
(2) S-methyl-5-thio-D-ribulose 1-phosphate = S-methyl-1-thio-D-ribulose 5-phosphate
Other name(s): rlp (gene name); 5-methylthioribulose-1-phosphate isomerase (incorrect)
Systematic name: S-methyl-5-thio-D-ribulose 1-phosphate 1,3-isomerase
Comments: The enzyme, characterized from the bacterium Rhodospirillum rubrum, participates in methionine salvage from S-methyl-5′-thioadenosine. It is a RuBisCO-like protein (RLP) that is not capable of carbon fixation, and catalyses an isomerization reaction that converts S-methyl-5-thio-D-ribulose 1-phosphate to a 3:1 mixture of S-methyl-1-thioxylulose 5-phosphate and S-methyl-1-thioribulose 5-phosphate. The reaction is an overall 1,3-proton transfer, which likely consists of two 1,2-proton transfer events.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Imker, H.J., Singh, J., Warlick, B.P., Tabita, F.R. and Gerlt, J.A. Mechanistic diversity in the RuBisCO superfamily: a novel isomerization reaction catalyzed by the RuBisCO-like protein from Rhodospirillum rubrum. Biochemistry 47 (2008) 11171–11173. [DOI] [PMID: 18826254]
2.  Erb, T.J., Evans, B.S., Cho, K., Warlick, B.P., Sriram, J., Wood, B.M., Imker, H.J., Sweedler, J.V., Tabita, F.R. and Gerlt, J.A. A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat. Chem. Biol. 8 (2012) 926–932. [DOI] [PMID: 23042035]
[EC 5.3.3.23 created 2021]
 
 
EC 2.7.1.100     Relevance: 88.4%
Accepted name: S-methyl-5-thioribose kinase
Reaction: ATP + S-methyl-5-thio-D-ribose = ADP + S-methyl-5-thio-α-D-ribose 1-phosphate
For diagram of the methionine-salvage pathway, click here
Other name(s): 5-methylthioribose kinase (phosphorylating); methylthioribose kinase; 5-methylthioribose kinase; ATP:S5-methyl-5-thio-D-ribose 1-phosphotransferase
Systematic name: ATP:S-methyl-5-thio-D-ribose 1-phosphotransferase
Comments: CTP also acts, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 68247-56-3
References:
1.  Ferro, A.J., Barrett, A. and Shapiro, S.K. 5-Methylthioribose kinase. A new enzyme involved in the formation of methionine from 5-methylthioribose. J. Biol. Chem. 253 (1978) 6021–6025. [PMID: 210167]
2.  Guranowski, A. Plant 5-methylthioribose kinase. Plant Physiol. 71 (1983) 932–935. [PMID: 16662931]
[EC 2.7.1.100 created 1980]
 
 
EC 5.3.1.23     Relevance: 86.1%
Accepted name: S-methyl-5-thioribose-1-phosphate isomerase
Reaction: S-methyl-5-thio-α-D-ribose 1-phosphate = S-methyl-5-thio-D-ribulose 1-phosphate
For diagram of the methionine-salvage pathway, click here
Other name(s): methylthioribose 1-phosphate isomerase; 1-PMTR isomerase; 5-methylthio-5-deoxy-D-ribose-1-phosphate ketol-isomerase; S-methyl-5-thio-5-deoxy-D-ribose-1-phosphate ketol-isomerase; S-methyl-5-thio-5-deoxy-D-ribose-1-phosphate aldose-ketose-isomerase; 1-phospho-5′-S-methylthioribose isomerase; S-methyl-5-thio-D-ribose-1-phosphate aldose-ketose-isomerase
Systematic name: S-methyl-5-thio-α-D-ribose-1-phosphate aldose-ketose-isomerase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 91608-95-6
References:
1.  Ghoda, L.Y., Savarese, T.M., Dexter, D.L., Parks, R.E., Jr., Trackman, P.C. and Abeles, R.H. Characterization of a defect in the pathway for converting 5′-deoxy-5′-methylthioadenosine to methionine in a subline of a cultured heterogeneous human colon carcinoma. J. Biol. Chem. 259 (1984) 6715–6719. [PMID: 6725268]
2.  Trackman, P.C. and Abeles, R.H. Methionine synthesis from 5′-S-methylthioadenosine. Resolution of enzyme activities and identification of 1-phospho-5-S-methylthioribulose. J. Biol. Chem. 258 (1983) 6717–6720. [PMID: 6853500]
3.  Furfine, E.S. and Abeles, R.H. Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella pneumoniae. J. Biol. Chem. 263 (1988) 9598–9606. [PMID: 2838472]
[EC 5.3.1.23 created 1989]
 
 
EC 3.1.3.14     Relevance: 85.4%
Accepted name: methylphosphothioglycerate phosphatase
Reaction: S-methyl-3-phospho-1-thio-D-glycerate + H2O = S-methyl-1-thio-D-glycerate + phosphate
Other name(s): methylthiophosphoglycerate phosphatase
Systematic name: S-methyl-3-phospho-1-thio-D-glycerate phosphohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9025-78-9
References:
1.  Black, S. and Wright, N.G. Enzymatic formation of glyceryl and phosphoglyceryl methylthiol esters. J. Biol. Chem. 221 (1956) 171–180. [PMID: 13345808]
[EC 3.1.3.14 created 1961]
 
 
EC 2.3.1.234     Relevance: 80.2%
Accepted name: N6-L-threonylcarbamoyladenine synthase
Reaction: L-threonylcarbamoyladenylate + adenine37 in tRNA = AMP + N6-L-threonylcarbamoyladenine37 in tRNA
For diagram of N6-L-threonylcarbamoyladenosine37 modified tRNA biosynthesis, click here
Glossary: N6-L-threonylcarbamoyladenine37 = t6A37
Other name(s): t6A synthase; Kae1; ygjD (gene name); Qri7
Systematic name: L-threonylcarbamoyladenylate:adenine37 in tRNA N6-L-threonylcarbamoyltransferase
Comments: The enzyme is involved in the synthesis of N6-threonylcarbamoyladenosine37 in tRNAs, which is found in tRNAs with the anticodon NNU, i.e. tRNAIle, tRNAThr, tRNAAsn, tRNALys, tRNASer and tRNAArg [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lauhon, C.T. Mechanism of N6-threonylcarbamoyladenonsine (t6A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP. Biochemistry 51 (2012) 8950–8963. [DOI] [PMID: 23072323]
2.  Deutsch, C., El Yacoubi, B., de Crecy-Lagard, V. and Iwata-Reuyl, D. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J. Biol. Chem. 287 (2012) 13666–13673. [DOI] [PMID: 22378793]
3.  Perrochia, L., Crozat, E., Hecker, A., Zhang, W., Bareille, J., Collinet, B., van Tilbeurgh, H., Forterre, P. and Basta, T. In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya. Nucleic Acids Res. 41 (2013) 1953–1964. [DOI] [PMID: 23258706]
4.  Wan, L.C.K., Mao, D.Y.L., Neculai, D., Strecker, J., Chiovitti, D., Kurinov, I., Poda, G., Thevakumaran, N., Yuan, F., Szilard, R.K., Lissina, E., Nislow, C., Caudy, A.A., Durocher, D. and Sicheri, F. Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res. 41 (2013) 6332–6346. [DOI] [PMID: 23620299]
[EC 2.3.1.234 created 2014 as EC 2.6.99.4, transferred 2014 to EC 2.3.1.234]
 
 
EC 2.6.99.4      
Transferred entry: N6-L-threonylcarbamoyladenine synthase. Now EC 2.3.1.234, N6-L-threonylcarbamoyladenine synthase.
[EC 2.6.99.4 created 2014, deleted 2014]
 
 
EC 2.4.2.28     Relevance: 66.5%
Accepted name: S-methyl-5′-thioadenosine phosphorylase
Reaction: S-methyl-5′-thioadenosine + phosphate = adenine + S-methyl-5-thio-α-D-ribose 1-phosphate
For diagram of methionine salvage, click here
Other name(s): 5′-deoxy-5′-methylthioadenosine phosphorylase; MTA phosphorylase; MeSAdo phosphorylase; MeSAdo/Ado phosphorylase; methylthioadenosine phosphorylase; methylthioadenosine nucleoside phosphorylase; 5′-methylthioadenosine:phosphate methylthio-D-ribosyl-transferase; S-methyl-5-thioadenosine phosphorylase; S-methyl-5-thioadenosine:phosphate S-methyl-5-thio-α-D-ribosyl-transferase
Systematic name: S-methyl-5′-thioadenosine:phosphate S-methyl-5-thio-α-D-ribosyl-transferase
Comments: Also acts on 5′-deoxyadenosine and other analogues having 5′-deoxy groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 61970-06-7
References:
1.  Carteni-Farina, M., Oliva, A., Romeo, G., Napolitano, G., De Rosa, M., Gambacorta, A. and Zappia, V. 5′-Methylthioadenosine phosphorylase from Caldariella acidophila. Purification and properties. Eur. J. Biochem. 101 (1979) 317–324. [DOI] [PMID: 118001]
2.  Garbers, D.L. Demonstration of 5′-methylthioadenosine phosphorylase activity in various rat tissues. Some properties of the enzyme from rat lung. Biochim. Biophys. Acta 523 (1978) 82–93. [DOI] [PMID: 415762]
3.  Pegg, A.E. and Williams-Ashman, H.G. Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate. Biochem. J. 115 (1969) 241–247. [PMID: 5378381]
[EC 2.4.2.28 created 1983]
 
 
EC 2.8.4.6     Relevance: 63.4%
Accepted name: S-methyl-1-thioxylulose 5-phosphate methylthiotransferase
Reaction: S-methyl-1-thio-D-xylulose 5-phosphate + glutathione = 1-deoxy-D-xylulose 5-phosphate + S-(methylsulfanyl)glutathione
Other name(s): 1-methylthioxylulose 5-phosphate sulfurylase (incorrect)
Systematic name: S-methyl-1-thio-D-xylulose 5-phosphate:glutathione methylthiotransferase
Comments: The enzyme, characterized from the bacterium Rhodospirillum rubrum, belongs to the cupin superfamily and contains a manganese ion. It participates in an anaerobic salvage pathway that restores methionine from S-methyl-5′-thioadenosine. The enzyme was assayed in vitro using L-dithiothreitol instead of glutathione.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Erb, T.J., Evans, B.S., Cho, K., Warlick, B.P., Sriram, J., Wood, B.M., Imker, H.J., Sweedler, J.V., Tabita, F.R. and Gerlt, J.A. A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat. Chem. Biol. 8 (2012) 926–932. [DOI] [PMID: 23042035]
2.  Warlick, B.P., Evans, B.S., Erb, T.J., Ramagopal, U.A., Sriram, J., Imker, H.J., Sauder, J.M., Bonanno, J.B., Burley, S.K., Tabita, F.R., Almo, S.C., Sweedler, J.S. and Gerlt, J.A. 1-methylthio-D-xylulose 5-phosphate methylsulfurylase: a novel route to 1-deoxy-D-xylulose 5-phosphate in Rhodospirillum rubrum. Biochemistry 51 (2012) 8324–8326. [DOI] [PMID: 23035785]
3.  Cho, K., Evans, B.S., Wood, B.M., Kumar, R., Erb, T.J., Warlick, B.P., Gerlt, J.A. and Sweedler, J.V. Integration of untargeted metabolomics with transcriptomics reveals active metabolic pathways. Metabolomics 2014 (2014) . [DOI] [PMID: 25705145]
[EC 2.8.4.6 created 2021]
 
 
EC 2.4.2.44     Relevance: 62.6%
Accepted name: S-methyl-5′-thioinosine phosphorylase
Reaction: S-methyl-5′-thioinosine + phosphate = hypoxanthine + S-methyl-5-thio-α-D-ribose 1-phosphate
Other name(s): MTIP; MTI phosphorylase; methylthioinosine phosphorylase
Systematic name: S-methyl-5′-thioinosine:phosphate S-methyl-5-thio-α-D-ribosyl-transferase
Comments: No activity with S-methyl-5′-thioadenosine. The catabolism of of 5′-methylthioadenosine in Pseudomonas aeruginosa involves deamination to S-methyl-5′-thioinosine (EC 3.5.4.31, S-methyl-5′-thioadenosine deaminase) and phosphorolysis to hypoxanthine [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Guan, R., Ho, M.C., Almo, S.C. and Schramm, V.L. Methylthioinosine phosphorylase from Pseudomonas aeruginosa. Structure and annotation of a novel enzyme in quorum sensing. Biochemistry 50 (2011) 1247–1254. [DOI] [PMID: 21197954]
[EC 2.4.2.44 created 2011]
 
 
EC 4.2.1.109     Relevance: 55.7%
Accepted name: methylthioribulose 1-phosphate dehydratase
Reaction: 5-(methylsulfanyl)-D-ribulose 1-phosphate = 5-(methylsulfanyl)-2,3-dioxopentyl phosphate + H2O
For diagram of methionine salvage, click here
Other name(s): 1-PMT-ribulose dehydratase; S-methyl-5-thio-D-ribulose-1-phosphate hydro-lyase; S-methyl-5-thio-D-ribulose-1-phosphate 4-hydro-lyase [5-(methylthio)-2,3-dioxopentyl-phosphate-forming]
Systematic name: 5-(methylsulfanyl)-D-ribulose-1-phosphate 4-hydro-lyase [5-(methylsulfanyl)-2,3-dioxopentyl-phosphate-forming]
Comments: This enzyme forms part of the methionine-salvage pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 1114239-22-3
References:
1.  Furfine, E.S. and Abeles, R.H. Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella pneumoniae. J. Biol. Chem. 263 (1988) 9598–9606. [PMID: 2838472]
2.  Wray, J.W. and Abeles, R.H. The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases. J. Biol. Chem. 270 (1995) 3147–3153. [DOI] [PMID: 7852397]
[EC 4.2.1.109 created 2006]
 
 
EC 2.3.1.79     Relevance: 36%
Accepted name: maltose O-acetyltransferase
Reaction: acetyl-CoA + maltose = CoA + 6-O-acetyl-α-D-glucopyranosyl-(1→4)-D-glucose
Other name(s): maltose transacetylase; maltose O-acetyltransferase; MAT
Systematic name: acetyl-CoA:maltose O-acetyltransferase
Comments: Not identical with EC 2.3.1.18, galactoside O-acetyltransferase. The acetyl group is added exclusively to the C6 position of glucose and to the C6 position of the non-reducing glucose residue of maltose [3]. Other substrates of this enzyme are glucose, which is a better substrate than maltose [2], and mannose and frucose, which are poorer substrates than maltose [2]. Isopropyl-β-thio-galactose, which is a good substrate for EC 2.3.1.118 is a poor substrate for this enzyme [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 81295-47-8
References:
1.  Freundlieb, S. and Boos, W. Maltose transacetylase of Escherichia coli: a preliminary report. Ann. Microbiol. (Paris) 133A (1982) 181–189. [PMID: 7041741]
2.  Brand, B. and Boos, W. Maltose transacetylase of Escherichia coli. Mapping and cloning of its structural, gene, mac, and characterization of the enzyme as a dimer of identical polypeptides with a molecular weight of 20,000. J. Biol. Chem. 266 (1991) 14113–14118. [PMID: 1856235]
3.  Lo Leggio, L., Dal Degan, F., Poulsen, P., Andersen, S.M. and Larsen, S. The structure and specificity of Escherichia coli maltose acetyltransferase give new insight into the LacA family of acyltransferases. Biochemistry 42 (2003) 5225–5235. [DOI] [PMID: 12731863]
[EC 2.3.1.79 created 1984]
 
 
EC 4.1.2.62     Relevance: 35%
Accepted name: 5-deoxyribulose 1-phosphate aldolase
Reaction: (1) 5-deoxy-D-ribulose 1-phosphate = glycerone phosphate + acetaldehyde
(2) S-methyl-5-thio-D-ribulose 1-phosphate = glycerone phosphate + (2-methylsulfanyl)acetaldehyde
Other name(s): 5-(methylthio)ribulose-1-phosphate aldolase; ald2 (gene name)
Systematic name: 5-deoxy-D-ribulose 1-phosphate acetaldehyde-lyase (glycerone-phosphate-forming)
Comments: The enzyme, originally characterized from the bacterium Rhodospirillum rubrum, is involved in degradation pathways for 5′-deoxyadenosine and S-methyl-5′-thioadenosine, which are formed from S-adenosyl-L-methionine (SAM, AdoMet) by radical SAM enzymes and other types of SAM-dependent enzymes, respectively. The enzyme requires a divalent metal cation, with Co2+ producing the highest activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  North, J.A., Miller, A.R., Wildenthal, J.A., Young, S.J. and Tabita, F.R. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation. Proc. Natl. Acad. Sci. USA 114 (2017) E10455–E10464. [PMID: 29133429]
2.  North, J.A., Wildenthal, J.A., Erb, T.J., Evans, B.S., Byerly, K.M., Gerlt, J.A. and Tabita, F.R. A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli. Mol. Microbiol. (2020) . [PMID: 31950558]
[EC 4.1.2.62 created 2020]
 
 
EC 4.8.1.7     Relevance: 33.3%
Accepted name: phenyl-N-(sulfonatooxy)methanimidothioate sulfolyase
Reaction: phenyl-N-(sulfonatooxy)methanimidothioate = benzylthiocyanate + sulfate
For diagram of glucotropeolin biosynthesis and catabolism, click here
Glossary: glucotropaeolin = 1-S-[(1Z)-2-phenyl-N-(sulfonatooxy)ethanimidoyl]-1-thio-β-D-glucopyranose
Other name(s): TFP (gene name) (ambiguous); thiocyanate-forming protein (ambiguous)
Systematic name: phenyl-N-(sulfonatooxy)methanimidothioate sulfate-lyase (benzylthiocyanate-forming)
Comments: The enzyme, characterized from the plant Lepidium sativum, is involved in the breakdown of the glucosinolate glucotropaeolin. Depending on the substrate, it can also form simple nitrile- and epithionitrile-containing products. cf. EC 4.8.1.5, thiohydroximate-O-sulfate sulfate/sulfur-lyase (nitrile-forming), and EC 4.8.1.6, N-(sulfonatooxy)alkenimidothioic acid sulfate-lyase (epithionitrile-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Burow, M., Bergner, A., Gershenzon, J. and Wittstock, U. Glucosinolate hydrolysis in Lepidium sativum - identification of the thiocyanate-forming protein. Plant Mol. Biol. 63 (2007) 49–61. [DOI] [PMID: 17139450]
[EC 4.8.1.7 created 2022]
 
 
EC 2.8.1.7     Relevance: 33.2%
Accepted name: cysteine desulfurase
Reaction: L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor (overall reaction)
(1a) L-cysteine + [enzyme]-cysteine = L-alanine + [enzyme]-S-sulfanylcysteine
(1b) [enzyme]-S-sulfanylcysteine + acceptor = [enzyme]-cysteine + S-sulfanyl-acceptor
For diagram of MoCo biosynthesis, click here
Other name(s): IscS; NIFS; NifS; SufS; cysteine desulfurylase
Systematic name: L-cysteine:acceptor sulfurtransferase
Comments: A pyridoxal-phosphate protein. The sulfur from free L-cysteine is first transferred to a cysteine residue in the active site, and then passed on to various other acceptors. The enzyme is involved in the biosynthesis of iron-sulfur clusters, thio-nucleosides in tRNA, thiamine, biotin, lipoate and pyranopterin (molybdopterin) [2]. In Azotobacter vinelandii, this sulfur provides the inorganic sulfide required for nitrogenous metallocluster formation [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 149371-08-4
References:
1.  Zheng, L.M., White, R.H., Cash, V.L., Jack, R.F. and Dean, D.R. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc. Natl. Acad. Sci. USA 90 (1993) 2754–2758. [DOI] [PMID: 8464885]
2.  Mihara, H. and Esaki, N. Bacterial cysteine desulfurases: Their function and mechanisms. Appl. Microbiol. Biotechnol. 60 (2002) 12–23. [DOI] [PMID: 12382038]
3.  Frazzon, J. and Dean, D.R. Formation of iron-sulfur clusters in bacteria: An emerging field in bioinorganic chemistry. Curr. Opin. Chem. Biol. 7 (2003) 166–173. [DOI] [PMID: 12714048]
[EC 2.8.1.7 created 2003, modified 2011]
 
 
EC 2.1.1.61     Relevance: 32.8%
Accepted name: tRNA 5-(aminomethyl)-2-thiouridylate-methyltransferase
Reaction: S-adenosyl-L-methionine + tRNA containing 5-(aminomethyl)-2-thiouridine = S-adenosyl-L-homocysteine + tRNA containing 5-[(methylamino)methyl]-2-thiouridylate
Other name(s): transfer ribonucleate 5-methylaminomethyl-2-thiouridylate 5-methyltransferase; tRNA 5-methylaminomethyl-2-thiouridylate 5′-methyltransferase; S-adenosyl-L-methionine:tRNA (5-methylaminomethyl-2-thio-uridylate)-methyltransferase; tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase
Systematic name: S-adenosyl-L-methionine:tRNA 5-(aminomethyl)-2-thiouridylate N-methyltransferase
Comments: This enzyme specifically adds the terminal methyl group of 5-[(methylamino)methyl]-2-thiouridylate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 39391-17-8
References:
1.  Taya, Y. and Nishimura, S. Biosynthesis of 5-methylaminomethyl-2-thiouridylate. I. Isolation of a new tRNA-methylase specific for 5-methylaminomethyl-2-thiouridylate. Biochem. Biophys. Res. Commun. 51 (1973) 1062–1068. [DOI] [PMID: 4703553]
2.  Taya, Y. and Nishimura, S. In: Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H.G. and Schlenk, F. (Ed.), The Biochemistry of Adenosylmethionine, Columbia University Press, New York, 1977, p. 251.
3.  Bujnicki, J.M., Oudjama, Y., Roovers, M., Owczarek, S., Caillet, J. and Droogmans, L. Identification of a bifunctional enzyme MnmC involved in the biosynthesis of a hypermodified uridine in the wobble position of tRNA. RNA 10 (2004) 1236–1242. [DOI] [PMID: 15247431]
4.  Kim, J. and Almo, S.C. Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC. BMC Struct Biol 13:5 (2013). [DOI] [PMID: 23617613]
[EC 2.1.1.61 created 1982, modified 2012, modified 2021]
 
 
EC 2.8.1.9     Relevance: 30.8%
Accepted name: molybdenum cofactor sulfurtransferase
Reaction: molybdenum cofactor + L-cysteine + reduced acceptor + 2 H+ = thio-molybdenum cofactor + L-alanine + H2O + oxidized acceptor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): molybdenum cofactor sulfurase; ABA3; HMCS; MoCo sulfurase; MoCo sulfurtransferase
Systematic name: L-cysteine:molybdenum cofactor sulfurtransferase
Comments: Contains pyridoxal phosphate. Replaces the equatorial oxo ligand of the molybdenum by sulfur via an enzyme-bound persulfide. The reaction occurs in prokaryotes and eukaryotes but MoCo sulfurtransferases are only found in eukaryotes. In prokaryotes the reaction is catalysed by two enzymes: cysteine desulfurase (EC 2.8.1.7), which is homologous to the N-terminus of eukaryotic MoCo sulfurtransferases, and a molybdo-enzyme specific chaperone which binds the MoCo and acts as an adapter protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bittner, F., Oreb, M. and Mendel, R.R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276 (2001) 40381–40384. [DOI] [PMID: 11553608]
2.  Heidenreich, T., Wollers, S., Mendel, R.R. and Bittner, F. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 280 (2005) 4213–4218. [DOI] [PMID: 15561708]
3.  Wollers, S., Heidenreich, T., Zarepour, M., Zachmann, D., Kraft, C., Zhao, Y., Mendel, R.R. and Bittner, F. Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 283 (2008) 9642–9650. [DOI] [PMID: 18258600]
[EC 2.8.1.9 created 2011, modified 2015]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald