The Enzyme Database

Displaying entries 51-100 of 136.

<< Previous | Next >>    printer_iconPrintable version

EC 2.7.7.52     
Accepted name: RNA uridylyltransferase
Reaction: UTP + RNAn = diphosphate + RNAn+1
Other name(s): terminal uridylyltransferase; TUT
Systematic name: UTP:RNA uridylyltransferase
Comments: The enzyme requires an oligoribonucleotide or polyribonucleotide with a free terminal 3′-OH as a primer.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 78519-53-6
References:
1.  Zabel, P., Dorssers, L., Wernars, K. and van Kammen, A. Terminal uridylyl transferase of Vigna unguiculata: purification and characterization of an enzyme catalyzing the addition of a single UMP residue to the 3′-end of an RNA primer. Nucleic Acids Res. 9 (1981) 2433–2453. [DOI] [PMID: 6269049]
[EC 2.7.7.52 created 1983]
 
 
EC 2.7.8.6     
Accepted name: undecaprenyl-phosphate galactose phosphotransferase
Reaction: UDP-α-D-galactose + undecaprenyl phosphate = UMP + α-D-galactosyl-diphosphoundecaprenol
Other name(s): poly(isoprenol)-phosphate galactose phosphotransferase; poly(isoprenyl)phosphate galactosephosphatetransferase; undecaprenyl phosphate galactosyl-1-phosphate transferase; UDP-galactose:undecaprenyl-phosphate galactose phosphotransferase
Systematic name: UDP-α-D-galactose:undecaprenyl-phosphate galactose phosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37278-29-8
References:
1.  Osborn, M.J. and Yuan Tze-Yuen, R. Biosynthesis of bacterial lipopolysaccharide. VII. Enzymatic formation of the first intermediate in biosynthesis of the O-antigen of Salmonella typhimurium. J. Biol. Chem. 243 (1968) 5145–5152. [PMID: 4878433]
2.  Wright, A., Dankert, M., Fennessen, P. and Robbins, P.W. Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis. Proc. Natl. Acad. Sci. USA 57 (1967) 1798–1803. [DOI] [PMID: 4291948]
[EC 2.7.8.6 created 1972]
 
 
EC 2.7.8.13     
Accepted name: phospho-N-acetylmuramoyl-pentapeptide-transferase
Reaction: UDP-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala) + undecaprenyl phosphate = UMP + Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
Other name(s): MraY transferase; UDP-MurNAc-L-Ala-D-γ-Glu-L-Lys-D-Ala-D-Ala:C55-isoprenoid alcohol transferase; UDP-MurNAc-Ala-γDGlu-Lys-DAla-DAla:undecaprenylphosphate transferase; phospho-N-acetylmuramoyl pentapeptide translocase; phospho-MurNAc-pentapeptide transferase; phospho-NAc-muramoyl-pentapeptide translocase (UMP); phosphoacetylmuramoylpentapeptide translocase; phosphoacetylmuramoylpentapeptidetransferase
Systematic name: UDP-MurAc(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala):undecaprenyl-phosphate phospho-N-acetylmuramoyl-pentapeptide-transferase
Comments: In Gram-negative and some Gram-positive organisms the L-lysine is replaced by meso-2,6-diaminoheptanedioate (meso-2,6-diaminopimelate, A2pm), which is combined with adjacent residues through its L-centre. The undecaprenol involved is ditrans,octacis-undecaprenol (for definitions, click here).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9068-50-2
References:
1.  Heydanek, M.G., Jr. and Neuhaus, F.C. The initial stage in peptidoglycan synthesis. IV. Solubilization of phospho-N-acetylmuramyl-pentapeptide translocase. Biochemistry 8 (1969) 1474–1481. [PMID: 5805290]
2.  Higashi, Y., Strominger, J.L. and Sweeley, C.C. Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proc. Natl. Acad. Sci. USA 57 (1967) 1878–1884. [DOI] [PMID: 5231417]
3.  Struve, W.G., Sinha, R.K. and Neuhaus, F.C. On the initial stage in peptidoglycan synthesis. Phospho-N-acetylmuramyl-pentapeptide translocase (uridine monophosphate). Biochemistry 5 (1966) 82–93. [PMID: 5938956]
4.  van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18 (2001) 503–519. [PMID: 11699883]
[EC 2.7.8.13 created 1972, modified 2002]
 
 
EC 2.7.8.15     
Accepted name: UDP-N-acetylglucosamine—dolichyl-phosphate N-acetylglucosaminephosphotransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + dolichyl phosphate = UMP + N-acetyl-α-D-glucosaminyl-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): UDP-D-N-acetylglucosamine N-acetylglucosamine 1-phosphate transferase; UDP-GlcNAc:dolichyl-phosphate GlcNAc-1-phosphate transferase; UDP-N-acetyl-D-glucosamine:dolichol phosphate N-acetyl-D-glucosamine-1-phosphate transferase; uridine diphosphoacetylglucosamine-dolichyl phosphate acetylglucosamine-1-phosphotransferase; chitobiosylpyrophosphoryldolichol synthase; dolichol phosphate N-acetylglucosamine-1-phosphotransferase; UDP-acetylglucosamine-dolichol phosphate acetylglucosamine phosphotransferase; UDP-acetylglucosamine-dolichol phosphate acetylglucosamine-1-phosphotransferase
Systematic name: UDP-N-α-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (configuration-retaining)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 70431-08-2
References:
1.  Sharma, C.B., Lehle, L. and Tanner, W. Solubilization and characterization of the initial enzymes of the dolichol pathway from yeast. Eur. J. Biochem. 126 (1982) 319–325. [DOI] [PMID: 6215245]
2.  Villemez, C.L. and Carlo, P.L. Properties of a soluble polyprenyl phosphate. UDP-D-N-acetylglucosamine N-acetylglucosamine-1-phosphate transferase. J. Biol. Chem. 255 (1980) 8174–8178. [PMID: 6447695]
[EC 2.7.8.15 created 1983]
 
 
EC 2.7.8.17     
Accepted name: UDP-N-acetylglucosamine—lysosomal-enzyme N-acetylglucosaminephosphotransferase
Reaction: UDP-N-acetyl-D-glucosamine + lysosomal-enzyme D-mannose = UMP + lysosomal-enzyme N-acetyl-D-glucosaminyl-phospho-D-mannose
Other name(s): N-acetylglucosaminylphosphotransferase; UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase; UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferase; uridine diphosphoacetylglucosamine-lysosomal enzyme precursor acetylglucosamine-1-phosphotransferase; uridine diphosphoacetylglucosamine-glycoprotein acetylglucosamine-1-phosphotransferase; lysosomal enzyme precursor acetylglucosamine-1-phosphotransferase; N-acetylglucosaminyl phosphotransferase; UDP-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase; UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase; UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase; UDP-N-acetylglucosamine:glycoprotein N-acetylglucosaminyl-1-phosphotransferase
Systematic name: UDP-N-acetyl-D-glucosamine:lysosomal-enzyme N-acetylglucosaminephosphotransferase
Comments: Some other glycoproteins with high-mannose can act as acceptors, but much more slowly than lysosomal enzymes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 84012-69-1
References:
1.  Reitman, M.L. and Kornfeld, S. UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J. Biol. Chem. 256 (1981) 4275–4281. [PMID: 6452459]
2.  Reitman, M.L. and Kornfeld, S. Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes. J. Biol. Chem. 256 (1981) 11977–11980. [PMID: 6457829]
3.  Waheed, A., Hasilik, A. and von Figura, K. UDP-N-acetylglucosamine:lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase. Partial purification and characterization of the rat liver Golgi enzyme. J. Biol. Chem. 257 (1982) 12322–12331. [PMID: 6288715]
4.  Waheed, A., Pohlmann, R., Hasilik, A. and von Figura, K. Subcellular location of two enzymes involved in the synthesis of phosphorylated recognition markers in lysosomal enzymes. J. Biol. Chem. 256 (1981) 4150–4152. [PMID: 6260788]
[EC 2.7.8.17 created 1984]
 
 
EC 2.7.8.18     
Accepted name: UDP-galactose—UDP-N-acetylglucosamine galactose phosphotransferase
Reaction: UDP-α-D-galactose + UDP-N-acetyl-α-D-glucosamine = UMP + UDP-N-acetyl-6-(α-D-galactose-1-phospho)-α-D-glucosamine
Other name(s): uridine diphosphogalactose-uridine diphosphoacetylglucosamine galactose-1-phosphotransferase; galactose-1-phosphotransferase; galactosyl phosphotransferase; UDP-galactose:UDP-N-acetyl-D-glucosamine galactose phosphotransferase
Systematic name: UDP-α-D-galactose:UDP-N-acetyl-α-D-glucosamine galactose phosphotransferase
Comments: N-Acetylglucosamine end-groups in glycoproteins can also act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 84932-43-4
References:
1.  Nakanishi, Y., Otsu, K. and Suzuki, S. Enzymatic transfer of galactosyl phosphate from UDP-galactose to UDP-N-acetylglucosamine. FEBS Lett. 151 (1983) 15–18. [DOI] [PMID: 6130977]
[EC 2.7.8.18 created 1986]
 
 
EC 2.7.8.19     
Accepted name: UDP-glucose—glycoprotein glucose phosphotransferase
Reaction: UDP-glucose + glycoprotein D-mannose = UMP + glycoprotein 6-(D-glucose-1-phospho)-D-mannose
Other name(s): UDP-glucose:glycoprotein glucose-1-phosphotransferase; GlcPTase; Glc-phosphotransferase; uridine diphosphoglucose-glycoprotein glucose-1-phosphotransferase
Systematic name: UDP-glucose:glycoprotein-D-mannose glucosephosphotransferase
Comments: Penultimate mannose residues on oligo-mannose type glycoproteins can act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 84861-40-5
References:
1.  Koro, L.A. and Marchase, R.B. A UDP-glucose:glycoprotein glucose-1-phosphotransferase in embryonic chicken neural retina. Cell 31 (1982) 739–748. [DOI] [PMID: 6297779]
[EC 2.7.8.19 created 1986]
 
 
EC 2.7.8.31     
Accepted name: undecaprenyl-phosphate glucose phosphotransferase
Reaction: UDP-glucose + ditrans,octacis-undecaprenyl phosphate = UMP + α-D-glucopyranosyl-diphospho-ditrans,octacis-undecaprenol
For diagram of xanthan biosynthesis, click here
Other name(s): GumD; undecaprenylphosphate glucosylphosphate transferase
Systematic name: UDP-glucose:ditrans,octacis-undecaprenyl-phosphate glucose phosphotransferase
Comments: The enzyme is involved in biosynthesis of xanthan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ielpi, L., Couso, R.O. and Dankert, M.A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175 (1993) 2490–2500. [DOI] [PMID: 7683019]
2.  Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A. and Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180 (1998) 1607–1617. [PMID: 9537354]
3.  Kim, S.Y., Kim, J.G., Lee, B.M. and Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 31 (2009) 265–270. [DOI] [PMID: 18854951]
[EC 2.7.8.31 created 2011]
 
 
EC 2.7.8.32     
Accepted name: 3-O-α-D-mannopyranosyl-α-D-mannopyranose xylosylphosphotransferase
Reaction: UDP-xylose + 3-O-α-D-mannopyranosyl-α-D-mannopyranose = UMP + 3-O-(6-O-α-D-xylosylphospho-α-D-mannopyranosyl)-α-D-mannopyranose
Glossary: O-α-D-xylosylphospho-α-D-mannopyranosyl)-α-D-mannopyranose = O-α-D-xylosylphosphono-α-D-mannopyranosyl)-α-D-mannopyranose
Other name(s): XPT1
Systematic name: UDP-D-xylose:3-O-α-D-mannopyranosyl-α-D-mannopyranose xylosylphosphotransferase
Comments: Mn2+ required for activity. The enzyme is specific for mannose as an acceptor but is flexible as to the structural context of the mannosyl disaccharide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Reilly, M.C., Levery, S.B., Castle, S.A., Klutts, J.S. and Doering, T.L. A novel xylosylphosphotransferase activity discovered in Cryptococcus neoformans. J. Biol. Chem. 284 (2009) 36118–36127. [DOI] [PMID: 19864415]
[EC 2.7.8.32 created 2011]
 
 
EC 2.7.8.33     
Accepted name: UDP-N-acetylglucosamine—undecaprenyl-phosphate N-acetylglucosaminephosphotransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + ditrans,octacis-undecaprenyl phosphate = UMP + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Glossary: N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = lipid I = GlcNAc-pyrophosphorylundecaprenol = ditrans,octacis-undecaprenyl-N-acetyl-α-D-glucosaminyl diphosphate
Other name(s): UDP-N-acetylglucosamine:undecaprenyl-phosphate GlcNAc-1-phosphate transferase; WecA; WecA transferase; UDP-GIcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase; GlcNAc-P-P-Und synthase; GPT (ambiguous); TagO; UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase; UDP-N-acetyl-D-glucosamine:ditrans,octacis-undecaprenyl phosphate N-acetylglucosaminephosphotransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:ditrans,octacis-undecaprenyl phosphate N-acetyl-α-D-glucosaminephosphotransferase
Comments: This enzyme catalyses the synthesis of N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol, an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. The enzyme also initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide in certain Escherichia coli strains, including K-12 [2] and of teichoic acid in certain Gram-positive bacteria [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Al-Dabbagh, B., Mengin-Lecreulx, D. and Bouhss, A. Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. J. Bacteriol. 190 (2008) 7141–7146. [DOI] [PMID: 18723618]
2.  Lehrer, J., Vigeant, K.A., Tatar, L.D. and Valvano, M.A. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J. Bacteriol. 189 (2007) 2618–2628. [DOI] [PMID: 17237164]
3.  Rush, J.S., Rick, P.D. and Waechter, C.J. Polyisoprenyl phosphate specificity of UDP-GlcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase from E.coli. Glycobiology 7 (1997) 315–322. [DOI] [PMID: 9134438]
4.  Soldo, B., Lazarevic, V. and Karamata, D. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148 (2002) 2079–2087. [DOI] [PMID: 12101296]
[EC 2.7.8.33 created 2011]
 
 
EC 2.7.8.35     
Accepted name: UDP-N-acetylglucosamine—decaprenyl-phosphate N-acetylglucosaminephosphotransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + trans,octacis-decaprenyl phosphate = UMP + N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of galactofuranan biosynthesis, click here
Other name(s): GlcNAc-1-phosphate transferase; UDP-GlcNAc:undecaprenyl phosphate GlcNAc-1-phosphate transferase; WecA; WecA transferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:trans,octacis-decaprenyl-phosphate N-acetylglucosaminephosphotransferase
Comments: Isolated from Mycobacterium tuberculosis and Mycobacterium smegmatis. This enzyme catalyses the synthesis of monotrans,octacis-decaprenyl-N-acetyl-α-D-glucosaminyl diphosphate (mycobacterial lipid I), an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. cf. EC 2.7.8.33, UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jin, Y., Xin, Y., Zhang, W. and Ma, Y. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis. FEMS Microbiol. Lett. 310 (2010) 54–61. [DOI] [PMID: 20637039]
[EC 2.7.8.35 created 2012]
 
 
EC 2.7.8.36     
Accepted name: undecaprenyl phosphate N,N′-diacetylbacillosamine 1-phosphate transferase
Reaction: UDP-N,N′-diacetylbacillosamine + tritrans,heptacis-undecaprenyl phosphate = UMP + N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: UDP-N,N′-diacetylbacillosamine = UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose
Other name(s): PglC
Systematic name: UDP-N,N′-diacetylbacillosamine:tritrans,heptacis-undecaprenyl-phosphate N,N′-diacetylbacillosamine transferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Glover, K.J., Weerapana, E., Chen, M.M. and Imperiali, B. Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 45 (2006) 5343–5350. [DOI] [PMID: 16618123]
[EC 2.7.8.36 created 2012]
 
 
EC 2.7.8.40     
Accepted name: UDP-N-acetylgalactosamine-undecaprenyl-phosphate N-acetylgalactosaminephosphotransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + ditrans,octacis-undecaprenyl phosphate = UMP + N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): WecP; UDP-GalNAc:polyprenol-P GalNAc-1-P transferase; UDP-GalNAc:undecaprenyl-phosphate GalNAc-1-phosphate transferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:ditrans,octacis-undecaprenyl phosphate N-acetyl-D-galactosaminephosphotransferase
Comments: The enzyme catalyses a step in the assembly of the repeating-unit of the O-antigen of the Gram-negative bacterium Aeromonas hydrophila AH-3. The enzyme shows no activity with UDP-N-acetyl-α-D-glucosamine (cf. EC 2.7.8.33, UDP-N-acetylglucosamine-undecaprenyl-phosphate N-acetylglucosaminephosphotransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Merino, S., Jimenez, N., Molero, R., Bouamama, L., Regue, M. and Tomas, J.M. A UDP-HexNAc:polyprenol-P GalNAc-1-P transferase (WecP) representing a new subgroup of the enzyme family. J. Bacteriol. 193 (2011) 1943–1952. [DOI] [PMID: 21335454]
[EC 2.7.8.40 created 2013]
 
 
EC 3.1.1.110     
Accepted name: xylono-1,5-lactonase
Reaction: D-xylono-1,5-lactone + H2O = D-xylonate
Other name(s): xylC (gene name); D-xylono-1,5-lactone lactonase
Systematic name: D-xylono-1,5-lactone lactonohydrolase
Comments: The enzyme, found in bacteria, participates in the degradation of D-xylose. cf. EC 3.1.1.68, xylono-1,4-lactonase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Toivari, M., Nygard, Y., Kumpula, E.P., Vehkomaki, M.L., Bencina, M., Valkonen, M., Maaheimo, H., Andberg, M., Koivula, A., Ruohonen, L., Penttila, M. and Wiebe, M.G. Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metab. Eng. 14 (2012) 427–436. [PMID: 22709678]
2.  Nygard, Y., Maaheimo, H., Mojzita, D., Toivari, M., Wiebe, M., Resnekov, O., Gustavo Pesce, C., Ruohonen, L. and Penttila, M. Single cell and in vivo analyses elucidate the effect of xylC lactonase during production of D-xylonate in Saccharomyces cerevisiae. Metab. Eng. 25 (2014) 238–247. [PMID: 25073011]
[EC 3.1.1.110 created 2019]
 
 
EC 3.1.2.14     
Accepted name: oleoyl-[acyl-carrier-protein] hydrolase
Reaction: an oleoyl-[acyl-carrier protein] + H2O = an [acyl-carrier protein] + oleate
Other name(s): acyl-[acyl-carrier-protein] hydrolase; acyl-ACP-hydrolase; acyl-acyl carrier protein hydrolase; oleoyl-ACP thioesterase; oleoyl-acyl carrier protein thioesterase; oleoyl-[acyl-carrier-protein] hydrolase
Systematic name: oleoyl-[acyl-carrier protein] hydrolase
Comments: Acts on acyl-carrier-protein thioesters of fatty acids from C12 to C18, but the derivative of oleic acid is hydrolysed much more rapidly than any other compound tested.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 68009-83-6
References:
1.  Ohlrogge, J.B., Shine, W.E. and Stumpf, P.K. Fat metabolism in higher plants. Characterization of plant acyl-ACP and acyl-CoA hydrolases. Arch. Biochem. Biophys. 189 (1978) 382–391. [DOI] [PMID: 30409]
2.  Shine, W.E., Mancha, M. and Stumpf, P.K. Fat metabolism in higher plants. The function of acyl thioesterases in the metabolism of acyl-coenzymes A and acyl-acyl carrier proteins. Arch. Biochem. Biophys. 172 (1976) 110–116. [DOI] [PMID: 3134]
[EC 3.1.2.14 created 1984]
 
 
EC 3.1.3.5     
Accepted name: 5′-nucleotidase
Reaction: a 5′-ribonucleotide + H2O = a ribonucleoside + phosphate
For diagram of caffeine biosynthesis, click here
Other name(s): uridine 5′-nucleotidase; 5′-adenylic phosphatase; adenosine 5′-phosphatase; AMP phosphatase; adenosine monophosphatase; 5′-mononucleotidase; AMPase; UMPase; snake venom 5′-nucleotidase; thimidine monophosphate nucleotidase; 5′-AMPase; 5′-AMP nucleotidase; AMP phosphohydrolase; IMP 5′-nucleotidase
Systematic name: 5′-ribonucleotide phosphohydrolase
Comments: Wide specificity for 5′-nucleotides.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-73-0
References:
1.  Gulland, J.M. and Jackson, E.M. 5-Nucleotidase. Biochem. J. 32 (1938) 597–601. [PMID: 16746659]
2.  Heppel, L.A. and Hilmoe, R.J. Purification and properties of 5-nucleotidase. J. Biol. Chem. 188 (1951) 665–676. [PMID: 14824154]
3.  Segal, H.L. and Brenner, B.M. 5′-Nucleotidase of rat liver microsomes. J. Biol. Chem. 235 (1960) 471–474. [PMID: 14444527]
[EC 3.1.3.5 created 1961]
 
 
EC 3.1.3.22     
Accepted name: mannitol-1-phosphatase
Reaction: D-mannitol 1-phosphate + H2O = D-mannitol + phosphate
Other name(s): mannitol-1-phosphate phosphatase
Systematic name: D-mannitol-1-phosphate phosphohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9055-29-2
References:
1.  Rumpho, M.E., Edwards, G.E. and Loescher, W.H. A pathway for photosynthetic carbon flow to mannitol in celery leaves. Activity and localization of key enzymes. Plant Physiol. 73 (1983) 869–873. [PMID: 16663332]
2.  Yamada, H., Okamoto, K., Kodama, K., Noguchi, F. and Tanaka, S. Enzymatic studies on mannitol formation by Piricularia oryzae. J. Biochem. (Tokyo) 49 (1961) 404–410. [PMID: 13787089]
[EC 3.1.3.22 created 1972]
 
 
EC 3.1.3.86     
Accepted name: phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 3,4-bisphosphate + phosphate
For diagram of 1-phosphatidyl-myo-inositol metabolism, click here
Glossary: 1-phosphatidyl-1D-myo-inositol 3,4-bisphosphate = PtdIns(3,4)P2
1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate = PtdIns(3,4,5)P3
1-phosphatidyl-1D-myo-inositol 1,3,4,5-trisphosphate = PtdIns(1,3,4,5)P4
Other name(s): SHIP1; SHIP2; SHIP; p150Ship
Systematic name: 1-phosphatidyl-1D-myo-inositol-3,4,5-trisphosphate 5-phosphohydrolase
Comments: This enzyme hydrolyses 1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways. The enzyme also shows activity toward (PtdIns(1,3,4,5)P4) [5]. The enzyme is involved in several signal transduction pathways in the immune system leading to an adverse range of effects.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lioubin, M.N., Algate, P.A., Tsai, S., Carlberg, K., Aebersold, A. and Rohrschneider, L.R. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 10 (1996) 1084–1095. [DOI] [PMID: 8654924]
2.  Damen, J.E., Liu, L., Rosten, P., Humphries, R.K., Jefferson, A.B., Majerus, P.W. and Krystal, G. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 93 (1996) 1689–1693. [DOI] [PMID: 8643691]
3.  Giuriato, S., Payrastre, B., Drayer, A.L., Plantavid, M., Woscholski, R., Parker, P., Erneux, C. and Chap, H. Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J. Biol. Chem. 272 (1997) 26857–26863. [DOI] [PMID: 9341117]
4.  Drayer, A.L., Pesesse, X., De Smedt, F., Woscholski, R., Parker, P. and Erneux, C. Cloning and expression of a human placenta inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase. Biochem. Biophys. Res. Commun. 225 (1996) 243–249. [DOI] [PMID: 8769125]
5.  Pesesse, X., Moreau, C., Drayer, A.L., Woscholski, R., Parker, P. and Erneux, C. The SH2 domain containing inositol 5-phosphatase SHIP2 displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity. FEBS Lett. 437 (1998) 301–303. [DOI] [PMID: 9824312]
[EC 3.1.3.86 created 2011]
 
 
EC 3.1.3.91     
Accepted name: 7-methylguanosine nucleotidase
Reaction: (1) N7-methyl-GMP + H2O = N7-methyl-guanosine + phosphate
(2) CMP + H2O = cytidine + phosphate
Other name(s): cytosolic nucleotidase III-like; cNIII-like; N7-methylguanylate 5′-phosphatase
Systematic name: N7-methyl-GMP phosphohydrolase
Comments: The enzyme also has low activity with N7-methyl-GDP, producing N7-methyl-GMP. Does not accept AMP or GMP, and has low activity with UMP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Buschmann, J., Moritz, B., Jeske, M., Lilie, H., Schierhorn, A. and Wahle, E. Identification of Drosophila and human 7-methyl GMP-specific nucleotidases. J. Biol. Chem. 288 (2013) 2441–2451. [DOI] [PMID: 23223233]
[EC 3.1.3.91 created 2013]
 
 
EC 3.1.4.37     
Accepted name: 2′,3′-cyclic-nucleotide 3′-phosphodiesterase
Reaction: nucleoside 2′,3′-cyclic phosphate + H2O = nucleoside 2′-phosphate
Other name(s): cyclic-CMP phosphodiesterase; 2′,3′-cyclic AMP phosphodiesterase; cyclic 2′,3′-nucleotide 3′-phosphodiesterase; cyclic 2′,3′-nucleotide phosphodiesterase; 2′,3′-cyclic nucleoside monophosphate phosphodiesterase; 2′,3′-cyclic nucleotide 3′-phosphohydrolase; CNPase; 2′,3′-cyclic nucleotide phosphohydrolase; 2′:3′-cyclic nucleotide 3′-phosphodiesterase; 2′:3′-CNMP-3′-ase
Systematic name: nucleoside-2′,3′-cyclic-phosphate 2′-nucleotidohydrolase
Comments: The brain enzyme acts on 2′,3′-cyclic AMP more rapidly than on the UMP or CMP derivatives. An enzyme from liver acts on 2′,3′-cyclic CMP more rapidly than on the purine derivatives; it also hydrolyses the corresponding 3′,5′-cyclic phosphates, but more slowly. This latter enzyme has been called cyclic-CMP phosphodiesterase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60098-35-3
References:
1.  Drummond, G.I., Iyer, N.T. and Keith, J. Hydrolysis of ribonucleoside 2′,3′-cyclic phosphates by a diesterase from brain. J. Biol. Chem. 237 (1962) 3535–3539.
2.  Helfman, D.M. and Kuo, J.F. A homogeneous cyclic CMP phosphodiesterase hydrolyzes both pyrimidine and purine cyclic 2′:3′- and 3′:5′-nucleotides. J. Biol. Chem. 257 (1982) 1044–1047. [PMID: 6274851]
3.  Helfman, D.M., Shoji, M. and Kuo, J.F. Purification to homogeneity and general properties of a novel phosphodiesterase hydrolyzing cyclic CMP and cyclic AMP. J. Biol. Chem. 256 (1981) 6327–6334. [PMID: 6263914]
4.  Kurihara, T., Nishizawa, Y., Takahashi, Y. and Odani, S. Chemical, immunological and catalytic properties of 2′:3′-cyclic nucleotide 3′-phosphodiesterase purified from brain white matter. Biochem. J. 195 (1981) 153–157. [PMID: 6272743]
5.  Nishizawa, Y., Kurihara, T. and Takahashi, Y. Spectrophotometric assay, solubilization and purification of brain 2′:3′-cyclic nucleotide 3′-phosphodiesterase. Biochem. J. 191 (1980) 71–82. [PMID: 6258586]
[EC 3.1.4.37 created 1976]
 
 
EC 3.2.2.10     
Accepted name: pyrimidine-5′-nucleotide nucleosidase
Reaction: a pyrimidine 5′-nucleotide + H2O = D-ribose 5-phosphate + a pyrimidine base
Other name(s): pyrimidine nucleotide N-ribosidase; Pyr5N
Systematic name: pyrimidine-5′-nucleotide phosphoribo(deoxyribo)hydrolase
Comments: Also acts on dUMP, dTMP and dCMP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-31-8
References:
1.  Imada, A. Degradation of pyrimidine nucleotides by enzyme systems of Streptomyces. II. Pyrimidine 5′-nucleotide phosphoribo(deoxyribo) hydrolase of Streptomyces virginiae. J. Gen. Appl. Microbiol. 13 (1967) 267–278.
2.  Imada, A., Kuno, M. and Igarasi, S. Degradation of pyrimidine nucleotides by enzyme systems of Streptomyces. I. Ribose-5-phosphate formation from pyrimidine nucleotides. J. Gen. Appl. Microbiol. 13 (1967) 255–265.
[EC 3.2.2.10 created 1972]
 
 
EC 3.4.21.92     
Accepted name: endopeptidase Clp
Reaction: Hydrolysis of proteins to small peptides in the presence of ATP and Mg2+. α-Casein is the usual test substrate. In the absence of ATP, only oligopeptides shorter than five residues are hydrolysed (such as succinyl-Leu-Tyr┼NHMec; and Leu-Tyr-Leu┼Tyr-Trp, in which cleavage of the -Tyr┼Leu- and -Tyr┼Trp bonds also occurs)
Other name(s): endopeptidase Ti; caseinolytic protease; protease Ti; ATP-dependent Clp protease; ClpP; Clp protease
Comments: An enzyme from bacteria that contains subunits of two types, ClpP, with peptidase activity, and ClpA, with ATPase activity. The ClpAP complex, which displays ATP-dependent endopeptidase activity, has the composition (ClpP14ClpA6)2 [4]. ClpP is the type example of peptidase family S14
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, MEROPS, PDB, CAS registry number: 110910-59-3
References:
1.  Gottesman, S., Clark, W.P. and Maurizi, M.R. The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate. J. Biol. Chem. 265 (1990) 7886–7893. [PMID: 2186030]
2.  Maurizi, M.R., Clark, W.P., Katayama, Y., Rudikoff, S., Pumphrey, J., Bowers, B. and Gottesman, S. Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J. Biol. Chem. 265 (1990) 12536–12545. [PMID: 2197275]
3.  Maurizi, M.R., Thompson, M.W., Singh, S.K. and Kim, S.-H. Endopeptidase Clp: the ATP-dependent Clp protease from Escherichia coli. Methods Enzymol. 244 (1994) 314–331. [DOI] [PMID: 7845217]
4.  Kessel, M. , Maurizi,M.R., Kim, B., Kocsis, E., Trus, B., Singh, S.K. and Steven, A.C. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J. Mol. Biol. 250 (1995) 587–594. [DOI] [PMID: 7623377]
[EC 3.4.21.92 created 1996]
 
 
EC 3.4.22.57     
Accepted name: caspase-4
Reaction: Strict requirement for Asp at the P1 position. It has a preferred cleavage sequence of Tyr-Val-Ala-Asp┼ but also cleaves at Asp-Glu-Val-Asp┼
Other name(s): ICErelII; ICErel-II; Ich-2; transcript X; TX; TX protease; caspase 4; CASP-4
Comments: This enzyme is part of the family of inflammatory caspases, which also includes caspase-1 (EC 3.4.22.36) and caspase-5 (EC 3.4.22.58) in humans and caspase-11 (EC 3.4.22.64), caspase-12, caspase-13 and caspase-14 in mice. Contains a caspase-recruitment domain (CARD) in its N-terminal prodomain, which plays a role in procaspase activation [3,5,6]. The enzyme is able to cleave itself and the p30 caspase-1 precursor, but, unlike caspase-1, it is very inefficient at generating mature interleukin-1β (IL-1β) from pro-IL-1β [1,4]. Both this enzyme and caspase-5 can cleave pro-caspase-3 to release the small subunit (p12) but not the large subunit (p17) [3]. The caspase-1 inhibitor Ac-Tyr-Val-Ala-Asp-CHO can also inhibit this enzyme, but more slowly [4]. Belongs in peptidase family C14.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 182762-08-9
References:
1.  Faucheu, C., Diu, A., Chan, A.W., Blanchet, A.M., Miossec, C., Hervé, F., Collard-Dutilleul, V., Gu, Y., Aldape, R.A., Lippke, J.A., Rocher, C., Su, M.S.-S., Livingston, D.J., Hercend, T. and Lalanne, J.-L. A novel human protease similar to the interleukin-1β converting enzyme induces apoptosis in transfected cells. EMBO J. 14 (1995) 1914–1922. [PMID: 7743998]
2.  Kamens, J., Paskind, M., Hugunin, M., Talanian, R.V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C.G., Li, P., Mankovich, J.A., Terranova, M. and Ghayur, T. Identification and characterization of ICH-2, a novel member of the interleukin-1β-converting enzyme family of cysteine proteases. J. Biol. Chem. 270 (1995) 15250–15256. [DOI] [PMID: 7797510]
3.  Kamada, S., Funahashi, Y. and Tsujimoto, Y. Caspase-4 and caspase-5, members of the ICE/CED-3 family of cysteine proteases, are CrmA-inhibitable proteases. Cell Death Differ. 4 (1997) 473–478. [DOI] [PMID: 16465268]
4.  Fassy, F., Krebs, O., Rey, H., Komara, B., Gillard, C., Capdevila, C., Yea, C., Faucheu, C., Blanchet, A.M., Miossec, C. and Diu-Hercend, A. Enzymatic activity of two caspases related to interleukin-1β-converting enzyme. Eur. J. Biochem. 253 (1998) 76–83. [DOI] [PMID: 9578463]
5.  Martinon, F. and Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117 (2004) 561–574. [DOI] [PMID: 15163405]
6.  Chang, H.Y. and Yang, X. Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64 (2000) 821–846. [PMID: 11104820]
[EC 3.4.22.57 created 2007]
 
 
EC 3.4.23.50     
Accepted name: human endogenous retrovirus K endopeptidase
Reaction: Processing at the authentic HIV-1 PR recognition site and release of the mature p17 matrix and the p24 capsid protein, as a result of the cleavage of the -SQNY┼PIVQ- cleavage site.
Other name(s): human endogenous retrovirus K10 endopeptidase; endogenous retrovirus HERV-K10 putative protease; human endogenous retrovirus K retropepsin; HERV K10 endopeptidase; HERV K10 retropepsin; HERV-K PR; HERV-K protease; HERV-K113 protease; human endogenous retrovirus K113 protease; human retrovirus K10 retropepsin
Comments: In peptidase family A2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, MEROPS, PDB
References:
1.  Towler, E.M., Gulnik, S.V., Bhat, T.N., Xie, D., Gustschina, E., Sumpter, T.R., Robertson, N., Jones, C., Sauter, M., Mueller-Lantzsch, N., Debouck, C. and Erickson, J.W. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease. Biochemistry 37 (1998) 17137–17144. [DOI] [PMID: 9860826]
[EC 3.4.23.50 created 2009]
 
 
EC 3.4.24.23     
Accepted name: matrilysin
Reaction: Cleavage of Ala14┼Leu and Tyr16┼Leu in B chain of insulin. No action on collagen types I, II, IV, V. Cleaves gelatin chain α2(I) > α1(I)
Other name(s): matrin; uterine metalloendopeptidase; matrix metalloproteinase 7; putative (or punctuated) metalloproteinase-1; matrix metalloproteinase pump 1; MMP 7; PUMP-1 proteinase; PUMP; metalloproteinase pump-1; putative metalloproteinase; MMP
Comments: Found in rat uterus; at 19 kDa, the smallest member of peptidase family M10 (interstitial collagenase family). Similar in specificity to stromelysin, but more active on azocoll
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, MEROPS, PDB, CAS registry number: 141256-52-2
References:
1.  Muller, D., Quantin, B., Gesnel, M.-C., Millon-Collard, R., Abecassis, J. and Breathnach, R. The collagenase gene family in humans consists of at least four members. Biochem. J. 253 (1988) 187–192. [PMID: 2844164]
2.  Woessner, J.F., Jr. and Taplin, C.J. Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J. Biol. Chem. 263 (1988) 16918–16925. [PMID: 3182822]
3.  Quantin, B., Murphy, G. and Breathnach, R. Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry 28 (1989) 5327–5334. [PMID: 2550050]
4.  Miyazaki, K., Hattori, Y., Umenishi, F., Yasumitsu, H. and Umeda, M. Purification and characterization of extracellular matrix-degrading metalloproteinase, matrin (pump-1), secreted from human rectal carcinoma cell line. Cancer Res. 50 (1990) 7758–7764. [PMID: 2253219]
[EC 3.4.24.23 created 1992]
 
 
EC 3.5.4.5     
Accepted name: cytidine deaminase
Reaction: (1) cytidine + H2O = uridine + NH3
(2) 2′-deoxycytidine + H2O = 2′-deoxyuridine + NH3
Other name(s): cytosine nucleoside deaminase; (deoxy)cytidine deaminase; cdd (gene name); CDA (gene name)
Systematic name: cytidine/2′-deoxycytidine aminohydrolase
Comments: Contains zinc. Catalyses the deamination of cytidine and 2′-deoxycytidine with similar efficiencies. The enzyme, which is widely distributed among organisms, is involved in salvage of both exogenous and endogenous cytidine and 2′-deoxycytidine for UMP synthesis.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9025-06-3
References:
1.  Roberts, D.W.A. The wheat leaf phosphatases. II. Pathway of hydrolysis of some nucleotides at pH 5.5. J. Biol. Chem. 222 (1956) 259–270. [PMID: 13366999]
2.  Wang, T.P., Sable, H.Z. and Lampen, J.O. Enzymatic deamination of cytosine nucleosides. J. Biol. Chem. 184 (1950) 17–28. [PMID: 15421968]
3.  Song, B.H. and Neuhard, J. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Mol. Gen. Genet. 216 (1989) 462–468. [PMID: 2526291]
4.  Laliberte, J. and Momparler, R.L. Human cytidine deaminase: purification of enzyme, cloning, and expression of its complementary DNA. Cancer Res. 54 (1994) 5401–5407. [PMID: 7923172]
5.  Vincenzetti, S., Cambi, A., Neuhard, J., Schnorr, K., Grelloni, M. and Vita, A. Cloning, expression, and purification of cytidine deaminase from Arabidopsis thaliana. Protein Expr. Purif. 15 (1999) 8–15. [DOI] [PMID: 10024464]
[EC 3.5.4.5 created 1961, modified 2013]
 
 
EC 3.5.4.12     
Accepted name: dCMP deaminase
Reaction: dCMP + H2O = dUMP + NH3
Other name(s): deoxycytidylate deaminase; deoxy-CMP-deaminase; deoxycytidylate aminohydrolase; deoxycytidine monophosphate deaminase; deoxycytidine-5′-phosphate deaminase; deoxycytidine-5′-monophosphate aminohydrolase
Systematic name: dCMP aminohydrolase
Comments: Also acts on some 5-substituted dCMPs.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9026-92-0
References:
1.  Scarano, E. The enzymatic deamination of 6-aminopyrimidine deoxyribonucleotides. I. The enzymatic deamination of deoxycytidine 5′-phosphate and of 5-methyldeoxycytidine 5-methyldeoxycytidine 5′-phosphate. J. Biol. Chem. 235 (1960) 706–713. [PMID: 14442222]
2.  Scarano, E., Bonaduce, L. and de Petrocellis, B. The enzymatic deamination of 6-aminopyrimidine deoxyribonucleotides. II. Purification and properties of a 6-aminopyrimidine deoxyribonucleoside 5′-phosphate deaminase from unfertilized eggs of sea urchin. J. Biol. Chem. 235 (1960) 3556–3561. [PMID: 13747062]
3.  Sergott, R.C., Debeer, L.J. and Bessman, M.J. On the regulation of a bacterial deoxycytidylate deaminase. J. Biol. Chem. 246 (1971) 7755–7758. [PMID: 5002683]
[EC 3.5.4.12 created 1965]
 
 
EC 3.5.4.30     
Accepted name: dCTP deaminase (dUMP-forming)
Reaction: dCTP + 2 H2O = dUMP + diphosphate + NH3
Systematic name: dCTP aminohydrolase (dUMP-forming)
Comments: Requires Mg2+. Is highly specific for dCTP as substrate as dCMP, CTP, CDP, CMP, cytosine or deoxycytosine are not deaminated. While most bacteria require two enzymes to form dUMP from dCTP (EC 3.5.4.13, dCTP deaminase and EC 3.6.1.23, dUTP diphosphatase), the archaeon Methanocaldococcus jannaschii uses a single enzyme to carry out both functions. This enzyme can also act as a dUTP diphosphatase, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Li, H., Xu, H., Graham, D.E. and White, R.H. The Methanococcus jannaschii dCTP deaminase is a bifunctional deaminase and diphosphatase. J. Biol. Chem. 278 (2003) 11100–11106. [DOI] [PMID: 12538648]
[EC 3.5.4.30 created 2003]
 
 
EC 3.6.1.23     
Accepted name: dUTP diphosphatase
Reaction: dUTP + H2O = dUMP + diphosphate
Other name(s): DUT (gene name); deoxyuridine-triphosphatase; dUTPase; dUTP pyrophosphatase; desoxyuridine 5′-triphosphate nucleotidohydrolase; desoxyuridine 5′-triphosphatase
Systematic name: dUTP nucleotidohydrolase
Comments: The enzyme catalyses the Mg2+-dependent hydrolysis of dUTP to dUMP, providing the substrate for EC 2.1.1.45, thymidylate synthase, leading to production of thymidine nucleotides. By reducing the effective ratio of dUTP to TTP, the enzyme also reduces the possibility of dUTP incorporation into DNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-34-2
References:
1.  Greenberg, G.R. and Somerville, R.L. Deoxyuridylate kinase activity and deoxyuridinetriphosphatase in Escherichia coli. Proc. Natl. Acad. Sci. USA 48 (1962) 247–257. [PMID: 13901467]
2.  Bertani, L.E., Häggmark, A. and Reichard, P. Enzymatic synthesis of deoxyribonucleotides. II. Formation and interconversion of deoxyuridine phosphates. J. Biol. Chem. 238 (1963) 3407–3413. [PMID: 14085395]
3.  Grindey, G.B. and Nichol, C.A. Mammalian deoxyuridine 5′-triphosphate pyrophosphatase. Biochim. Biophys. Acta 240 (1971) 180–183. [DOI] [PMID: 5105331]
4.  Shlomai, J. and Kornberg, A. Deoxyuridine triphosphatase of Escherichia coli. Purification, properties, and use as a reagent to reduce uracil incorporation into DNA. J. Biol. Chem. 253 (1978) 3305–3312. [PMID: 346589]
5.  Giroir, L.E. and Deutsch, W.A. Drosophila deoxyuridine triphosphatase. Purification and characterization. J. Biol. Chem. 262 (1987) 130–134. [PMID: 3025197]
6.  Cedergren-Zeppezauer, E.S., Larsson, G., Nyman, P.O., Dauter, Z. and Wilson, K.S. Crystal structure of a dUTPase. Nature 355 (1992) 740–743. [DOI] [PMID: 1311056]
7.  Ladner, R.D., McNulty, D.E., Carr, S.A., Roberts, G.D. and Caradonna, S.J. Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. J. Biol. Chem. 271 (1996) 7745–7751. [DOI] [PMID: 8631816]
8.  Bajaj, M. and Moriyama, H. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63 (2007) 409–411. [DOI] [PMID: 17565183]
9.  Varga, B., Barabas, O., Kovari, J., Toth, J., Hunyadi-Gulyas, E., Klement, E., Medzihradszky, K.F., Tolgyesi, F., Fidy, J. and Vertessy, B.G. Active site closure facilitates juxtaposition of reactant atoms for initiation of catalysis by human dUTPase. FEBS Lett. 581 (2007) 4783–4788. [DOI] [PMID: 17880943]
[EC 3.6.1.23 created 1972]
 
 
EC 3.6.1.45     
Accepted name: UDP-sugar diphosphatase
Reaction: UDP-sugar + H2O = UMP + α-D-aldose 1-phosphate
Other name(s): nucleosidediphosphate-sugar pyrophosphatase; nucleosidediphosphate-sugar diphosphatase; UDP-sugar hydrolase; UDP-sugar pyrophosphatase
Systematic name: UDP-sugar sugarphosphohydrolase
Comments: A divalent cation is required for activity. UDP-sugar is the best substrate, although other nucleoside-sugar diphosphates are used as substrates with similar Km values but much lower maximum velocities. Thus, this enzyme has a specificity distinct from that of ADP-sugar diphosphatase (EC 3.6.1.21). Some but not all enzymes of this class also appear to have 5′-nucleotidase (see EC 3.1.3.5) activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55354-38-6
References:
1.  Garrett, A.R., Johnson, L.A., Beacham, I.R. Isolation, molecular characterization and expression of the ushB gene of Salmonella typhimurium which encodes a membrane bound UDP-sugar hydrolase. Mol. Microbiol. 3 (1989) 177–186. [DOI] [PMID: 2548058]
2.  Glaser, L., Melo, A., Paul, R. Uridine diphosphate sugar hydrolase. Purification of enzyme and protein inhibitor. J. Biol. Chem. 242 (1987) 1944–1954. [PMID: 5337593]
[EC 3.6.1.45 created 1999]
 
 
EC 3.6.1.54     
Accepted name: UDP-2,3-diacylglucosamine diphosphatase
Reaction: a UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine + H2O = a lipid X + UMP
For diagram of lipid IVA biosynthesis, click here
Glossary: a lipid X = 2-N-[(3R)-3-hydroxyacyl]-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine 1-phosphate =
2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine
Other name(s): lpxH (gene name); UDP-2,3-diacylglucosamine hydrolase; UDP-2,3-diacylglucosamine pyrophosphatase; ybbF (gene name); UDP-2,3-bis[(3R)-3-hydroxymyristoyl]-α-D-glucosamine 2,3-bis[(3R)-3-hydroxymyristoyl]-β-D-glucosaminyl 1-phosphate phosphohydrolase (incorrect); UDP-2-N,3-O-bis[(3R)-3-hydroxytetradecanoyl]-α-D-glucosamine 2-N,3-O-bis[(3R)-3-hydroxytetradecanoyl]-α-D-glucosaminyl 1-phosphate phosphohydrolase
Systematic name: UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine 2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine-1-phosphate phosphohydrolase
Comments: The enzyme catalyses a step in the biosynthesis of lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Babinski, K.J., Ribeiro, A.A. and Raetz, C.R. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J. Biol. Chem. 277 (2002) 25937–25946. [DOI] [PMID: 12000770]
2.  Babinski, K.J., Kanjilal, S.J. and Raetz, C.R. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J. Biol. Chem. 277 (2002) 25947–25956. [DOI] [PMID: 12000771]
3.  Okada, C., Wakabayashi, H., Kobayashi, M., Shinoda, A., Tanaka, I. and Yao, M. Crystal structures of the UDP-diacylglucosamine pyrophosphohydrase LpxH from Pseudomonas aeruginosa. Sci. Rep. 6:32822 (2016). [DOI] [PMID: 27609419]
4.  Cho, J., Lee, C.J., Zhao, J., Young, H.E. and Zhou, P. Structure of the essential Haemophilus influenzae UDP-diacylglucosamine pyrophosphohydrolase LpxH in lipid A biosynthesis. Nat Microbiol 1:16154 (2016). [DOI] [PMID: 27780190]
5.  Arenas, J., Pupo, E., de Jonge, E., Perez-Ortega, J., Schaarschmidt, J., van der Ley, P. and Tommassen, J. Substrate specificity of the pyrophosphohydrolase LpxH determines the asymmetry of Bordetella pertussis lipid A. J. Biol. Chem. 294 (2019) 7982–7989. [DOI] [PMID: 30926608]
[EC 3.6.1.54 created 2010, modified 2021]
 
 
EC 3.6.3.7      
Transferred entry: Na+-exporting ATPase. Now EC 7.2.2.3, P-type Na+ transporter
[EC 3.6.3.7 created 2000, modified 2001, transferred 2018 to EC 7.2.2.3, deleted 2018]
 
 
EC 3.6.3.8      
Transferred entry: Ca2+-transporting ATPase. Now EC 7.2.2.10, Ca2+-transporting ATPase
[EC 3.6.3.8 created 1984 as EC 3.6.1.38, transferred 2000 to EC 3.6.3.8, modified 2001, modified 2011, deleted 2018]
 
 
EC 3.6.3.9      
Transferred entry: Na+/K+-exchanging ATPase. Now EC 7.2.2.13, Na+/K+-exchanging ATPase
[EC 3.6.3.9 created 1984 as EC 3.6.1.37, transferred 2000 to EC 3.6.3.9, modified 2001, deleted 2018]
 
 
EC 3.6.3.11      
Deleted entry: Cl--transporting ATPase. The activity was only ever studied in crude extracts, and is an artifact.
[EC 3.6.3.11 created 2000, deleted 2020]
 
 
EC 3.6.3.14      
Transferred entry: H+-transporting two-sector ATPase. Now EC 7.1.2.2, H+-transporting two-sector ATPase
[EC 3.6.3.14 created 1984 as EC 3.6.1.34, transferred 2000 to EC 3.6.3.14, deleted 2018]
 
 
EC 3.6.3.16      
Transferred entry: arsenite-transporting ATPase. Now EC 7.3.2.7, arsenite-transporting ATPase
[EC 3.6.3.16 created 2000, deleted 2019]
 
 
EC 3.6.3.44      
Transferred entry: xenobiotic-transporting ATPase. Now EC 7.6.2.2, ABC-type xenobiotic transporter
[EC 3.6.3.44 created 2000 (EC 3.6.3.45 incorporated 2006), modified 2006, deleted 2018]
 
 
EC 3.6.3.46      
Transferred entry: cadmium-transporting ATPase. Now EC 7.2.2.2, ABC-type Cd2+ transporter
[EC 3.6.3.46 created 2000, transferred 2018 to EC 7.2.2.2, deleted 2018]
 
 
EC 3.9.1.3     
Accepted name: phosphohistidine phosphatase
Reaction: a [protein]-N-phospho-L-histidine + H2O = a [protein]-L-histidine + phosphate
Other name(s): PHPT1 (gene name); protein histidine phosphatase; PHP
Systematic name: [protein]-N-phospho-L-histidine phosphohydrolase
Comments: This eukaryotic enzyme dephosphorylates phosphorylated histidine residues within proteins and peptides. The enzyme acts on phosphate groups attached to both the pros- and tele-nitrogen atoms, but the pros- position is somewhat preferred (by a factor of two at the most) [4]. The substrate specificity depends on the amino acid sequence or structural context of the phosphohistidine in a phosphoprotein. The enzyme is also active on free phosphoramidate [1,4] and peptide-bound phospholysine [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ek, P., Pettersson, G., Ek, B., Gong, F., Li, J.P. and Zetterqvist, O. Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase. Eur. J. Biochem. 269 (2002) 5016–5023. [DOI] [PMID: 12383260]
2.  Klumpp, S., Hermesmeier, J., Selke, D., Baumeister, R., Kellner, R. and Krieglstein, J. Protein histidine phosphatase: a novel enzyme with potency for neuronal signaling. J Cereb Blood Flow Metab 22 (2002) 1420–1424. [DOI] [PMID: 12468887]
3.  Baumer, N., Maurer, A., Krieglstein, J. and Klumpp, S. Expression of protein histidine phosphatase in Escherichia coli, purification, and determination of enzyme activity. Methods Mol. Biol. 365 (2007) 247–260. [DOI] [PMID: 17200567]
4.  Attwood, P.V., Ludwig, K., Bergander, K., Besant, P.G., Adina-Zada, A., Krieglstein, J. and Klumpp, S. Chemical phosphorylation of histidine-containing peptides based on the sequence of histone H4 and their dephosphorylation by protein histidine phosphatase. Biochim. Biophys. Acta 1804 (2010) 199–205. [DOI] [PMID: 19836471]
5.  Ek, P., Ek, B. and Zetterqvist, O. Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine. Ups J Med Sci 120 (2015) 20–27. [DOI] [PMID: 25574816]
[EC 3.9.1.3 created 2016]
 
 
EC 4.1.1.23     
Accepted name: orotidine-5′-phosphate decarboxylase
Reaction: orotidine 5′-phosphate = UMP + CO2
For diagram of pyrimidine biosynthesis, click here
Other name(s): orotidine-5′-monophosphate decarboxylase; orotodylate decarboxylase; orotidine phosphate decarboxylase; OMP decarboxylase; orotate monophosphate decarboxylase; orotidine monophosphate decarboxylase; orotidine phosphate decarboxylase; OMP-DC; orotate decarboxylase; orotidine 5′-phosphate decarboxylase; orotidylic decarboxylase; orotidylic acid decarboxylase; orotodylate decarboxylase; ODCase; orotic decarboxylase; orotidine-5′-phosphate carboxy-lyase
Systematic name: orotidine-5′-phosphate carboxy-lyase (UMP-forming)
Comments: The enzyme from higher eukaryotes is identical with EC 2.4.2.10 orotate phosphoribosyltransferase .
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-62-8
References:
1.  Jones, M.E., Kavipurapu, P.R. and Traut, T.W. Orotate phosphoribosyltransferase: orotidylate decarboxylase (Ehrlich ascites cell). Methods Enzymol. 51 (1978) 155–167. [DOI] [PMID: 692383]
2.  Lieberman, I., Kornberg, A. and Simms, E.S. Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phosphate and uridine-5′-phosphate. J. Biol. Chem. 215 (1955) 403–415. [PMID: 14392174]
3.  McClard, R.W., Black, M.J., Livingstone, L.R. and Jones, M.E. Isolation and initial characterization of the single polypeptide that synthesizes uridine 5′-monophosphate from orotate in Ehrlich ascites carcinoma. Purification by tandem affinity chromatography of uridine-5′-monophosphate synthase. Biochemistry 19 (1980) 4699–4706. [PMID: 6893554]
[EC 4.1.1.23 created 1961, modified 1986]
 
 
EC 4.1.1.41      
Transferred entry: (S)-methylmalonyl-CoA decarboxylase. Now EC 7.2.4.3, (S)-methylmalonyl-CoA decarboxylase
[EC 4.1.1.41 created 1972, modified 1983, modified 1986, deleted 2018]
 
 
EC 4.1.1.70      
Transferred entry: glutaconyl-CoA decarboxylase. Now EC 7.2.4.5, glutaconyl-CoA decarboxylase
[EC 4.1.1.70 created 1986, modified 2003, deleted 2019]
 
 
EC 4.1.1.89      
Transferred entry: biotin-dependent malonate decarboxylase. Now EC 7.2.4.4, biotin-dependent malonate decarboxylase
[EC 4.1.1.89 created 2008, deleted 2018]
 
 
EC 4.2.1.70     
Accepted name: pseudouridylate synthase
Reaction: uracil + D-ribose 5-phosphate = pseudouridine 5′-phosphate + H2O
Other name(s): pseudouridylic acid synthetase; pseudouridine monophosphate synthetase; 5-ribosyluracil 5-phosphate synthetase; pseudouridylate synthetase; upsilonUMP synthetase; uracil hydro-lyase (adding D-ribose 5-phosphate); YeiN; pseudouridine-5′-phosphate glycosidase
Systematic name: uracil hydro-lyase (adding D-ribose 5-phosphate; pseudouridine-5′-phosphate-forming)
Comments: The reaction it readily reversible. While the enzymes from Tetrahymena pyriformis and Agrobacterium tumefaciens produce pseudouridine 5′-phosphate the enzyme from Escherichia coli functions as a pseudouridine-5′-phosphate glycosidase in vivo [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-35-2
References:
1.  Heinrikson, R.L. and Goldwasser, E. Studies on the biosynthesis of 5-ribosyluracil 5′-monophosphate in Tetrahymena pyriformis. J. Biol. Chem. 239 (1964) 1177–1187. [PMID: 14165924]
2.  Matsushita, T. and Davis, F.F. Studies on pseudouridylic acid synthetase from various sources. Biochim. Biophys. Acta 238 (1971) 165–173. [DOI] [PMID: 4936431]
3.  Rensen, J.F., Matsushita, T., Chirikjian, J.G. and Davis, F.F. Enzymatic synthesis of deoxypseudouridylic acid and a study of certain of its properties. Biochim. Biophys. Acta 281 (1972) 481–487. [DOI] [PMID: 4569284]
4.  Suzuki, T. and Hochater, R.M. On the biosynthesis of pseudouridine and of pseudouridylic acid in Agrobacterium tumefaciens. Can. J. Biochem. 44 (1966) 259–272. [PMID: 5942965]
5.  Preumont, A., Snoussi, K., Stroobant, V., Collet, J.F. and Van Schaftingen, E. Molecular identification of pseudouridine-metabolizing enzymes. J. Biol. Chem. 283 (2008) 25238–25246. [DOI] [PMID: 18591240]
[EC 4.2.1.70 created 1978]
 
 
EC 4.2.1.121     
Accepted name: colneleate synthase
Reaction: (9S,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate = (8E)-9-[(1E,3Z)-nona-1,3-dien-1-yloxy]non-8-enoate + H2O
Glossary: colneleate = (8E)-9-[(1E,3Z)-nona-1,3-dien-1-yloxy]non-8-enoate
Other name(s): 9-divinyl ether synthase; 9-DES; CYP74D; CYP74D1; CYP74 cytochrome P-450; DES1; (8E)-9-[(1E,3E)-nona-1,3-dien-1-yloxy]non-8-enoate synthase
Systematic name: (9S,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate hydro-lyase
Comments: A heme-thiolate protein (P-450) [2]. It catalyses the selective removal of pro-R hydrogen at C-8 in the biosynthesis of colneleic acid [4]. It forms also (8E)-9-[(1E,3Z,6Z)-nona-1,3,6-trien-1-yloxy]non-8-enoic acid (i.e. colnelenate) from (9S,10E,12Z,15Z)-9-hydroperoxy-10,12,15-octadecatrienoate. The corresponding 13-hydroperoxides are poor substrates [1,3]. The divinyl ethers colneleate and colnelenate have antimicrobial activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Stumpe, M., Kandzia, R., Gobel, C., Rosahl, S. and Feussner, I. A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells. FEBS Lett. 507 (2001) 371–376. [DOI] [PMID: 11696374]
2.  Itoh, A. and Howe, G.A. Molecular cloning of a divinyl ether synthase. Identification as a CYP74 cytochrome P-450. J. Biol. Chem. 276 (2001) 3620–3627. [DOI] [PMID: 11060314]
3.  Fammartino, A., Cardinale, F., Gobel, C., Mene-Saffrane, L., Fournier, J., Feussner, I. and Esquerre-Tugaye, M.T. Characterization of a divinyl ether biosynthetic pathway specifically associated with pathogenesis in tobacco. Plant Physiol. 143 (2007) 378–388. [DOI] [PMID: 17085514]
4.  Hamberg, M. Hidden stereospecificity in the biosynthesis of divinyl ether fatty acids. FEBS J. 272 (2005) 736–743. [DOI] [PMID: 15670154]
[EC 4.2.1.121 created 2011, modified 2014]
 
 
EC 4.2.1.183     
Accepted name: etheroleic acid synthase
Reaction: (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoate = (9Z,11E)-12-[(1E)-hex-1-en-1-yloxy]dodeca-9,11-dienoate + H2O
Glossary: (9Z,11E)-12-[(1E)-hex-1-en-1-yloxy]dodeca-9,11-dienoic acid = etheroleic acid
(9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid = 13(S)-HPOD
Other name(s): colneleic acid/etheroleic acid synthase; 13/9-DES; 9/13-DES; 13/9-divinyl ether synthase; (9Z,11E)-12-[(1E)-hex-1-en-1-yloxy]dodeca-9,11-dienoate synthase
Systematic name: (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoate lyase
Comments: A heme-thiolate protein (P-450) occurring in several plants, including Allium sativum (garlic) and Selaginella moellendorffii (spikemoss). The enzyme also catalyses the reaction of EC 4.2.1.121, colneleate synthase, to a lesser extent.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Grechkin, A.N., Fazliev, F.N. and Mukhtarova, L.S. The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins. FEBS Lett. 371 (1995) 159–162. [DOI] [PMID: 7672118]
2.  Stumpe, M., Carsjens, J.G., Gobel, C. and Feussner, I. Divinyl ether synthesis in garlic bulbs. J. Exp. Bot. 59 (2008) 907–915. [DOI] [PMID: 18326559]
3.  Gorina, S.S., Toporkova, Y.Y., Mukhtarova, L.S., Smirnova, E.O., Chechetkin, I.R., Khairutdinov, B.I., Gogolev, Y.V. and Grechkin, A.N. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3. Biochim. Biophys Acta 1861 (2016) 301–309. [DOI] [PMID: 26776054]
[EC 4.2.1.183 created 2024]
 
 
EC 4.2.3.5     
Accepted name: chorismate synthase
Reaction: 5-O-(1-carboxyvinyl)-3-phosphoshikimate = chorismate + phosphate
For diagram of shikimate and chorismate biosynthesis, click here and for mechanism of reaction, click here
Other name(s): 5-O-(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase
Systematic name: 5-O-(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase (chorismate-forming)
Comments: Requires FMN. The reaction goes via a radical mechanism that involves reduced FMN and its semiquinone (FMNH·). Shikimate is numbered so that the double-bond is between C-1 and C-2, but some earlier papers numbered the ring in the reverse direction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9077-07-0
References:
1.  Gaertner, F.H. and Cole, K.W. Properties of chorismate synthase in Neurospora crassa. J. Biol. Chem. 248 (1973) 4602–4609. [PMID: 4146266]
2.  Morell, H., Clark, M.J., Knowles, P.F. and Sprinson, D.B. The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate. J. Biol. Chem. 242 (1967) 82–90. [PMID: 4289188]
3.  Welch, G.R., Cole, K.W. and Gaertner, F.H. Chorismate synthase of Neurospora crassa: a flavoprotein. Arch. Biochem. Biophys. 165 (1974) 505–518. [DOI] [PMID: 4155270]
4.  Bornemann, S., Lowe, D.J. and Thorneley, R.N. The transient kinetics of Escherichia coli chorismate synthase: substrate consumption, product formation, phosphate dissociation, and characterization of a flavin intermediate. Biochemistry 35 (1996) 9907–9916. [DOI] [PMID: 8703965]
5.  Bornemann, S., Theoclitou, M.E., Brune, M., Webb, M.R., Thorneley, R.N. and Abell, C. A secondary β deuterium kinetic isotope effect in the chorismate synthase reaction. Bioorg. Chem. 28 (2000) 191–204. [DOI] [PMID: 11034781]
6.  Osborne, A., Thorneley, R.N., Abell, C. and Bornemann, S. Studies with substrate and cofactor analogues provide evidence for a radical mechanism in the chorismate synthase reaction. J. Biol. Chem. 275 (2000) 35825–35830. [DOI] [PMID: 10956653]
[EC 4.2.3.5 created 1978 as EC 4.6.1.4, modified 1983, transferred 2000 to EC 4.2.3.5, modified 2002]
 
 
EC 4.2.3.19     
Accepted name: ent-kaurene synthase
Reaction: ent-copalyl diphosphate = ent-kaurene + diphosphate
For diagram of the biosynthesis of copalyl diphosphate, abietadiene and ent-kaurene, click here
Other name(s): ent-kaurene synthase B; ent-kaurene synthetase B, ent-copalyl-diphosphate diphosphate-lyase (cyclizing)
Systematic name: ent-copalyl-diphosphate diphosphate-lyase (cyclizing, ent-kaurene-forming)
Comments: Part of a bifunctional enzyme involved in the biosynthesis of ent-kaurene. See also EC 5.5.1.13 (ent-copalyl diphosphate synthase)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9055-64-5
References:
1.  Fall, R.R., West, C.A. Purification and properties of kaurene synthetase from Fusarium moniliforme. J. Biol. Chem. 246 (1971) 6913–6928. [PMID: 4331199]
2.  Yamaguchi, S., Saito, T., Abe, H., Yamane, H., Murofushi, N. and Kamiya, Y. Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.). Plant J. 10 (1996) 203–213. [DOI] [PMID: 8771778]
3.  Kawaide, H., Imai, R., Sassa, T. and Kamiya, Y. Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis. J. Biol. Chem. 272 (1997) 21706–21712. [DOI] [PMID: 9268298]
4.  Toyomasu, T., Kawaide, H., Ishizaki, A., Shinoda, S., Otsuka, M., Mitsuhashi, W. and Sassa, T. Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase. Biosci. Biotechnol. Biochem. 64 (2000) 660–664. [DOI] [PMID: 10803977]
[EC 4.2.3.19 created 2002]
 
 
EC 4.3.99.2      
Transferred entry: carboxybiotin decarboxylase. Now EC 7.2.4.1, carboxybiotin decarboxylase
[EC 4.3.99.2 created 2008, deleted 2018]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald