The Enzyme Database

Your query returned 6 entries.    printer_iconPrintable version



EC 1.1.1.53     
Accepted name: 3α(or 20β)-hydroxysteroid dehydrogenase
Reaction: androstan-3α,17β-diol + NAD+ = 17β-hydroxyandrostan-3-one + NADH + H+
Other name(s): cortisone reductase; (R)-20-hydroxysteroid dehydrogenase; 20β-hydroxy steroid dehydrogenase; Δ4-3-ketosteroid hydrogenase; 20β-hydroxysteroid dehydrogenase; 3α,20β-hydroxysteroid:NAD+-oxidoreductase; NADH-20β-hydroxysteroid dehydrogenase; 20β-HSD
Systematic name: 3α(or 20β)-hydroxysteroid:NAD+ oxidoreductase
Comments: The 3α-hydroxy group or 20β-hydroxy group of pregnane and androstane steroids can act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-42-6
References:
1.  Edwards, C.A.F. and Orr, J.C. Comparison of the 3α-and 20β-hydroxysteroid dehydrogenase activities of the cortisone reductase of Streptomyces hydrogenans. Biochemistry 17 (1978) 4370–4376. [PMID: 718844]
2.  Hübener, H.J. and Sahrholz, F.G. 20β-hydroxy-steroid-dehydrogenase. II. Darstellung und Kristallisation. Biochem. Z. 333 (1960) 95–105. [PMID: 14403761]
3.  Hübener, H.J., Sahrholz, F.G., Schmidt-Thomé, J., Nesemann, G. and Junk, R. 20β-Hydroxy-Steroid-Dehydrogenase, ein neues kristallines Enzym. Biochim. Biophys. Acta 35 (1959) 270–272. [PMID: 14403760]
4.  Lynn, W.S. and Brown, R.H. The conversion of progesterone to androgens by testes. J. Biol. Chem. 232 (1958) 1015–1030. [PMID: 13549484]
5.  Strickler, R.C., Covey, D.F. and Tobias, B. Study of 3α, 20 β-hydroxysteroid dehydrogenase with an enzyme-generated affinity alkylator: dual enzyme activity at a single active site. Biochemistry 19 (1980) 4950–4954. [PMID: 6936053]
6.  Sweet, F. and Samant, B.S. Bifunctional enzyme activity at the same active site: study of 3α and 20β activity by affinity alkylation of 3α, 20β-hydroxysteroid dehydrogenase with 17-(bromoacetoxy)steroids. Biochemistry 19 (1980) 978–986. [PMID: 6928375]
[EC 1.1.1.53 created 1961, modified 1986]
 
 
EC 1.3.1.3     
Accepted name: Δ4-3-oxosteroid 5β-reductase
Reaction: (1) 5β-cholestan-3-one + NADP+ = cholest-4-en-3-one + NADPH + H+
(2) 17,21-dihydroxy-5β-pregnane-3,11,20-trione + NADP+ = cortisone + NADPH + H+
For diagram of cholesterol catabolism (rings A, B and C), click here
Glossary: cortisone = 17,21-dihydroxypregn-4-ene-3,11,20-trione
Other name(s): 3-oxo-Δ4-steroid 5β-reductase; 5β-reductase; androstenedione 5β-reductase; cholestenone 5β-reductase; cortisone 5β-reductase; cortisone β-reductase; cortisone Δ4-5β-reductase; steroid 5β-reductase; testosterone 5β-reductase; Δ4-3-ketosteroid 5β-reductase; Δ4-5β-reductase; Δ4-hydrogenase; 4,5β-dihydrocortisone:NADP+ Δ4-oxidoreductase; 3-oxo-5β-steroid:NADP+ Δ4-oxidoreductase
Systematic name: 5β-cholestan-3-one:NADP+ 4,5-oxidoreductase
Comments: The enzyme from human efficiently catalyses the reduction of progesterone, androstenedione, 17α-hydroxyprogesterone and testosterone to 5β-reduced metabolites; it can also act on aldosterone, corticosterone and cortisol, but to a lesser extent [8]. The bile acid intermediates 7α,12α-dihydroxy-4-cholesten-3-one and 7α-hydroxy-4-cholesten-3-one can also act as substrates [9].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-08-7
References:
1.  Forchielli, E. and Dorfman, R.I. Separation of Δ4-5α- and Δ4-5β-hydrogenases from rat liver homogenates. J. Biol. Chem. 223 (1956) 443–448. [PMID: 13376613]
2.  Brown-Grant, K., Forchielli, E. and Dorfman, R.I. The Δ4-hydrogenases of guinea pig adrenal gland. J. Biol. Chem. 235 (1960) 1317–1320. [PMID: 13805063]
3.  Levy, H.R. and Talalay, P. Enzymatic introduction of double bonds into steroid ring A. J. Am. Chem. Soc. 79 (1957) 2658–2659.
4.  Tomkins, G.M. The enzymatic reduction of Δ4-3-ketosteroids. J. Biol. Chem. 225 (1957) 13–24. [PMID: 13416214]
5.  Sugimoto, Y., Yoshida, M. and Tamaoki, B. Purification of 5β-reductase from hepatic cytosol fraction of chicken. J. Steroid Biochem. 37 (1990) 717–724. [PMID: 2278855]
6.  Furuebisu, M., Deguchi, S. and Okuda, K. Identification of cortisone 5β-reductase as Δ4-3-ketosteroid 5β-reductase. Biochim. Biophys. Acta 912 (1987) 110–114. [DOI] [PMID: 3828348]
7.  Okuda, A. and Okuda, K. Purification and characterization of Δ4-3-ketosteroid 5β-reductase. J. Biol. Chem. 259 (1984) 7519–7524. [PMID: 6736016]
8.  Charbonneau, A. and The, V.L. Genomic organization of a human 5β-reductase and its pseudogene and substrate selectivity of the expressed enzyme. Biochim. Biophys. Acta 1517 (2001) 228–235. [DOI] [PMID: 11342103]
9.  Kondo, K.H., Kai, M.H., Setoguchi, Y., Eggertsen, G., Sjöblom, P., Setoguchi, T., Okuda, K.I. and Björkhem, I. Cloning and expression of cDNA of human Δ4-3-oxosteroid 5β-reductase and substrate specificity of the expressed enzyme. Eur. J. Biochem. 219 (1994) 357–363. [PMID: 7508385]
[EC 1.3.1.3 created 1961 (EC 1.3.1.23 created 1972, incorporated 2005), modified 2005]
 
 
EC 1.3.1.4      
Transferred entry: EC 1.3.1.4, cortisone α-reductase, transferred to EC 1.3.1.22, 3-oxo-5α-steroid 4-dehydrogenase (NADP+)
[EC 1.3.1.4 created 1965, deleted 2012]
 
 
EC 1.14.14.16     
Accepted name: steroid 21-monooxygenase
Reaction: a C21 steroid + [reduced NADPH—hemoprotein reductase] + O2 = a 21-hydroxy-C21-steroid + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): steroid 21-hydroxylase; 21-hydroxylase; P450c21; CYP21A2 (gene name)
Systematic name: steroid,NADPH—hemoprotein reductase:oxygen oxidoreductase (21-hydroxylating)
Comments: A P-450 heme-thiolate protein responsible for the conversion of progesterone and 17α-hydroxyprogesterone to their respective 21-hydroxylated derivatives, 11-deoxycorticosterone and 11-deoxycortisol. Involved in the biosynthesis of the hormones aldosterone and cortisol. The electron donor is EC 1.6.2.4, NADPH—hemoprotein reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-68-9
References:
1.  Hayano, M. and Dorfman, R.I. The action of adrenal homogenates on progesterone, 17-hydroxyprogesterone and 21-desoxycortisone. Arch. Biochem. Biophys. 36 (1952) 237–239. [DOI] [PMID: 14934270]
2.  Plager, J.E. and Samuels, L.T. Synthesis of C14-17-hydroxy-11-desoxycorticosterone and 17-hydroxycorticosterone by fractionated extracts of adrenal homogenates. Arch. Biochem. Biophys. 42 (1953) 477–478. [DOI] [PMID: 13031650]
3.  Ryan, K.J. and Engel, L.L. Hydroxylation of steroids at carbon 21. J. Biol. Chem. 225 (1957) 103–114. [PMID: 13416221]
4.  Kominami, S., Ochi, H., Kobayashi, Y. and Takemori, S. Studies on the steroid hydroxylation system in adrenal cortex microsomes. Purification and characterization of cytochrome P-450 specific for steroid C-21 hydroxylation. J. Biol. Chem. 255 (1980) 3386–3394. [PMID: 6767716]
5.  Martineau, I., Belanger, A., Tchernof, A. and Tremblay, Y. Molecular cloning and expression of guinea pig cytochrome P450c21 cDNA (steroid 21-hydroxylase) isolated from the adrenals. J. Steroid Biochem. Mol. Biol. 86 (2003) 123–132. [DOI] [PMID: 14568563]
6.  Arase, M., Waterman, M.R. and Kagawa, N. Purification and characterization of bovine steroid 21-hydroxylase (P450c21) efficiently expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 344 (2006) 400–405. [DOI] [PMID: 16597434]
[EC 1.14.14.16 created 1961 as EC 1.99.1.11, transferred 1965 to EC 1.14.1.8, transferred 1972 to EC 1.14.99.10, modified 2013, transferred 2015 to EC 1.14.14.16]
 
 
EC 1.14.99.10      
Transferred entry: steroid 21-monooxygenase. Now EC 1.14.14.16, steroid 21-monooxygenase
[EC 1.14.99.10 created 1961 as EC 1.99.1.11, transferred 1965 to EC 1.14.1.8, transferred 1972 to EC 1.14.99.10, modified 2013, deleted 2015]
 
 
EC 2.3.1.16     
Accepted name: acetyl-CoA C-acyltransferase
Reaction: acyl-CoA + acetyl-CoA = CoA + 3-oxoacyl-CoA (overall reaction)
(1a) [acetyl-CoA C-acyltransferase]-S-acyl-L-cysteine + acetyl-CoA = 3-oxoacyl-CoA + [acetyl-CoA C-acyltransferase]-L-cysteine
(1b) acyl-CoA + [acetyl-CoA C-acyltransferase]-L-cysteine = [acetyl-CoA C-acyltransferase]-S-acyl-L-cysteine + CoA
For diagram of aerobic phenylacetate catabolism, click here and for diagram of Benzoyl-CoA catabolism, click here
Other name(s): β-ketothiolase; 3-ketoacyl-CoA thiolase; KAT; β-ketoacyl coenzyme A thiolase; β-ketoacyl-CoA thiolase; β-ketoadipyl coenzyme A thiolase; β-ketoadipyl-CoA thiolase; 3-ketoacyl CoA thiolase; 3-ketoacyl coenzyme A thiolase; 3-ketoacyl thiolase; 3-ketothiolase; 3-oxoacyl-CoA thiolase; 3-oxoacyl-coenzyme A thiolase; 6-oxoacyl-CoA thiolase; acetoacetyl-CoA β-ketothiolase; acetyl-CoA acyltransferase; ketoacyl-CoA acyltransferase; ketoacyl-coenzyme A thiolase; long-chain 3-oxoacyl-CoA thiolase; oxoacyl-coenzyme A thiolase; pro-3-ketoacyl-CoA thiolase; thiolase I; type I thiolase; 2-methylacetoacetyl-CoA thiolase [misleading]
Systematic name: acyl-CoA:acetyl-CoA C-acyltransferase
Comments: The enzyme, found in both eukaryotes and in prokaryotes, is involved in degradation pathways such as fatty acid β-oxidation. The enzyme acts on 3-oxoacyl-CoAs to produce acetyl-CoA and an acyl-CoA shortened by two carbon atoms. The reaction starts with the acylation of a nucleophilic cysteine at the active site by a 3-oxoacyl-CoA, with the concomitant release of acetyl-CoA. In the second step the acyl group is transferred to CoA. Most enzymes have a broad substrate range for the 3-oxoacyl-CoA. cf. EC 2.3.1.9, acetyl-CoA C-acetyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 9029-97-4
References:
1.  Beinert, H., Bock, R.M., Goldman, D.S., Green, D.E., Mahler, H.R., Mii, S., Stansly, P.G. and Wakil, S.J. A synthesis of dl-cortisone acetate. J. Am. Chem. Soc. 75 (1953) 4111–4112.
2.  Goldman, D.S. Studies on the fatty acid oxidizing system of animal tissue. VII. The β-ketoacyl coenzyme A cleavage enzyme. J. Biol. Chem. 208 (1954) 345–357. [PMID: 13174544]
3.  Stern, J.R., Coon, M.J. and del Campillo, A. Enzymatic breakdown and synthesis of acetoacetate. Nature 171 (1953) 28–30. [PMID: 13025466]
[EC 2.3.1.16 created 1961, modified 2019]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald