The Enzyme Database

Your query returned 2 entries.    printer_iconPrintable version



EC 1.1.1.334     
Accepted name: methylecgonone reductase
Reaction: ecgonine methyl ester + NADP+ = ecgonone methyl ester + NADPH + H+
Glossary: ecgonine methyl ester = 2β-carbomethoxy-3β-tropine = methyl (1R,2R,3S,5S)-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
ecgonone methyl ester = 2β-carbomethoxy-3-tropinone = methyl (1R,2R,5S)-8-methyl-3-oxo-8-azabicyclo[3.2.1]octane-2-carboxylate
Other name(s): MecgoR (gene name)
Systematic name: ecgonine methyl ester:NADP+ oxidoreductase
Comments: The enzyme from the plant Erythroxylum coca catalyses the penultimate step in the biosynthesis of cocaine. In vivo the reaction proceeds in the opposite direction. With NADH instead of NADPH the reaction rate is reduced to 14%. The enzyme also reduces tropinone, nortropinone and 6-hydroxytropinone but with lower reaction rates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jirschitzka, J., Schmidt, G.W., Reichelt, M., Schneider, B., Gershenzon, J. and D'Auria, J.C. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc. Natl. Acad. Sci. USA 109 (2012) 10304–10309. [DOI] [PMID: 22665766]
[EC 1.1.1.334 created 2012]
 
 
EC 3.1.1.84     
Accepted name: cocaine esterase
Reaction: cocaine + H2O = ecgonine methyl ester + benzoate
Glossary: ecgonine methyl ester = 2β-carbomethoxy-3β-tropine = methyl (1R,2R,3S,5S)-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
Other name(s): CocE; hCE2; hCE-2; human carboxylesterase 2
Systematic name: cocaine benzoylhydrolase
Comments: Rhodococcus sp. strain MB1 and Pseudomonas maltophilia strain MB11L can utilize cocaine as sole source of carbon and energy [2,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
References:
1.  Gao, D., Narasimhan, D.L., Macdonald, J., Brim, R., Ko, M.C., Landry, D.W., Woods, J.H., Sunahara, R.K. and Zhan, C.G. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol. Pharmacol. 75 (2009) 318–323. [DOI] [PMID: 18987161]
2.  Bresler, M.M., Rosser, S.J., Basran, A. and Bruce, N.C. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Appl. Environ. Microbiol. 66 (2000) 904–908. [DOI] [PMID: 10698749]
3.  Britt, A.J., Bruce, N.C. and Lowe, C.R. Identification of a cocaine esterase in a strain of Pseudomonas maltophilia. J. Bacteriol. 174 (1992) 2087–2094. [DOI] [PMID: 1551831]
4.  Larsen, N.A., Turner, J.M., Stevens, J., Rosser, S.J., Basran, A., Lerner, R.A., Bruce, N.C. and Wilson, I.A. Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9 (2002) 17–21. [DOI] [PMID: 11742345]
5.  Pindel, E.V., Kedishvili, N.Y., Abraham, T.L., Brzezinski, M.R., Zhang, J., Dean, R.A. and Bosron, W.F. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J. Biol. Chem. 272 (1997) 14769–14775. [DOI] [PMID: 9169443]
[EC 3.1.1.84 created 2010]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald