The Enzyme Database

Your query returned 9 entries.    printer_iconPrintable version



EC 1.3.1.42     
Accepted name: 12-oxophytodienoate reductase
Reaction: 8-[(1R,2R)-3-oxo-2-{(Z)-pent-2-enyl}cyclopentyl]octanoate + NADP+ = (15Z)-12-oxophyto-10,15-dienoate + NADPH + H+
Other name(s): 12-oxo-phytodienoic acid reductase
Systematic name: 8-[(1R,2R)-3-oxo-2-{(Z)-pent-2-enyl}cyclopentyl]octanoate:NADP+ 4-oxidoreductase
Comments: Involved in the conversion of linolenate into jasmonate in Zea mays.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 101150-03-2
References:
1.  Vick, B.A. and Zimmerman, D.C. Characterization of 12-oxo-phytodienoic acid reductase in corn - the jasmonic acid pathway. Plant Physiol. 80 (1986) 202–205. [PMID: 16664582]
[EC 1.3.1.42 created 1989]
 
 
EC 1.13.11.12     
Accepted name: linoleate 13S-lipoxygenase
Reaction: (1) linoleate + O2 = (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate
(2) α-linolenate + O2 = (9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
α-linolenate = (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
Other name(s): 13-lipoxidase; carotene oxidase; 13-lipoperoxidase; fat oxidase; 13-lipoxydase; lionoleate:O2 13-oxidoreductase
Systematic name: linoleate:oxygen 13-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C-13 position with (S)-configuration. This enzyme produces precursors for several important compounds, including the plant hormone jasmonic acid. EC 1.13.11.58, linoleate 9S-lipoxygenase, catalyses a similar reaction at the second available position of these fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-60-1
References:
1.  Christopher, J., Pistorius, E. and Axelrod, B. Isolation of an enzyme of soybean lipoxidase. Biochim. Biophys. Acta 198 (1970) 12–19. [DOI] [PMID: 5461103]
2.  Theorell, H., Holman, R.T. and Åkesson, Å. Crystalline lipoxidase. Acta Chem. Scand. 1 (1947) 571–576. [PMID: 18907700]
3.  Zimmerman, D.C. Specificity of flaxseed lipoxidase. Lipids 5 (1970) 392–397. [DOI] [PMID: 5447012]
4.  Royo, J., Vancanneyt, G., Perez, A.G., Sanz, C., Stormann, K., Rosahl, S. and Sanchez-Serrano, J.J. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J. Biol. Chem. 271 (1996) 21012–21019. [DOI] [PMID: 8702864]
5.  Bachmann, A., Hause, B., Maucher, H., Garbe, E., Voros, K., Weichert, H., Wasternack, C. and Feussner, I. Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol. Chem. 383 (2002) 1645–1657. [DOI] [PMID: 12452441]
[EC 1.13.11.12 created 1961 as EC 1.99.2.1, transferred 1965 to EC 1.13.1.13, transferred 1972 to EC 1.13.11.12, modified 2011, modified 2012]
 
 
EC 1.14.13.228     
Accepted name: jasmonic acid 12-hydroxylase
Reaction: (–)-jasmonate + NADPH + H+ + O2 = trans-12-hydroxyjasmonate + NADP+ + H2O
Glossary: (–)-jasmonate = {(1R,2R)-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetate
trans-12-hydroxyjasmonate = {(1R,2R)-2-[(2Z)-5-hydroxypent-2-en-1-yl]-3-oxocyclopentyl}acetate
Other name(s): ABM (gene name)
Systematic name: jasmonate,NADPH:oxygen oxidoreductase (12-hydroxylating)
Comments: Although believed to occur in plants, the enzyme has so far been characterized only from the rice blast fungus, Magnaporthe oryzae. The fungus strategically deploys the enzyme to hydroxylate and inactivate endogenous jasmonate to evade the jasmonate-based innate immunity in rice plants.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Patkar, R.N., Benke, P.I., Qu, Z., Chen, Y.Y., Yang, F., Swarup, S. and Naqvi, N.I. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 11 (2015) 733–740. [DOI] [PMID: 26258762]
[EC 1.14.13.228 created 2016]
 
 
EC 1.14.14.48     
Accepted name: jasmonoyl-L-amino acid 12-hydroxylase
Reaction: a jasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-hydroxyjasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: jasmonic acid = {(1R,2R)-3-oxo-2-[(2Z)pent-2-en-1-yl]cyclopentyl}acetic acid
(+)-7-epi-jasmonic acid = {(1R,2S)-3-oxo-2-[(2Z)pent-2-en-1-yl]cyclopentyl}acetic acid
Other name(s): CYP94B1 (gene name); CYP94B3 (gene name)
Systematic name: jasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-amino acid conjugates, catalysing the hydroxylation of the C-12 position of jasmonic acid. While the best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the enzyme was shown to be active with jasmonoyl-L-valine and jasmonoyl-L-phenylalanine, and is likely to be active with other jasmonoyl-amino acid conjugates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koo, A.J., Cooke, T.F. and Howe, G.A. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc. Natl. Acad. Sci. USA 108 (2011) 9298–9303. [DOI] [PMID: 21576464]
2.  Kitaoka, N., Matsubara, T., Sato, M., Takahashi, K., Wakuta, S., Kawaide, H., Matsui, H., Nabeta, K. and Matsuura, H. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol. 52 (2011) 1757–1765. [DOI] [PMID: 21849397]
3.  Heitz, T., Widemann, E., Lugan, R., Miesch, L., Ullmann, P., Desaubry, L., Holder, E., Grausem, B., Kandel, S., Miesch, M., Werck-Reichhart, D. and Pinot, F. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287 (2012) 6296–6306. [DOI] [PMID: 22215670]
4.  Kitaoka, N., Kawaide, H., Amano, N., Matsubara, T., Nabeta, K., Takahashi, K. and Matsuura, H. CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite. Phytochemistry 99 (2014) 6–13. [DOI] [PMID: 24467969]
5.  Koo, A.J., Thireault, C., Zemelis, S., Poudel, A.N., Zhang, T., Kitaoka, N., Brandizzi, F., Matsuura, H. and Howe, G.A. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J. Biol. Chem. 289 (2014) 29728–29738. [DOI] [PMID: 25210037]
6.  Widemann, E., Grausem, B., Renault, H., Pineau, E., Heinrich, C., Lugan, R., Ullmann, P., Miesch, L., Aubert, Y., Miesch, M., Heitz, T. and Pinot, F. Sequential oxidation of jasmonoyl-phenylalanine and jasmonoyl-isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 117 (2015) 388–399. [DOI] [PMID: 26164240]
[EC 1.14.14.48 created 2017]
 
 
EC 1.14.14.49     
Accepted name: 12-hydroxyjasmonoyl-L-amino acid 12-hydroxylase
Reaction: a 12-hydroxyjasmonoyl-L-amino acid + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = a 12-hydroxy-12-oxojasmonoyl-L-amino acid + 2 [oxidized NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) a 12-hydroxyjasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1b) a 12-oxojasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-hydroxy-12-oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: 12-hydroxy-12-oxojasmonate = (3Z)-5-[(1R,2R)-2-(carboxymethyl)-5-oxocyclopentyl]pent-3-enoate
Other name(s): CYP94C1 (gene name)
Systematic name: 12-hydroxyjasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-amino acid conjugates that have been hydroxylated at the C-12 position of jasmonic acid by EC 1.14.14.48, jasmonoyl-L-amino acid 12-hydroxylase, further oxidizing that position to a carboxylate via an aldehyde intermediate. While the best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the enzyme was shown to be active with jasmonoyl-L-phenylalanine, and is likely to be active with other jasmonoyl-amino acid conjugates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Heitz, T., Widemann, E., Lugan, R., Miesch, L., Ullmann, P., Desaubry, L., Holder, E., Grausem, B., Kandel, S., Miesch, M., Werck-Reichhart, D. and Pinot, F. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287 (2012) 6296–6306. [DOI] [PMID: 22215670]
2.  Widemann, E., Grausem, B., Renault, H., Pineau, E., Heinrich, C., Lugan, R., Ullmann, P., Miesch, L., Aubert, Y., Miesch, M., Heitz, T. and Pinot, F. Sequential oxidation of jasmonoyl-phenylalanine and jasmonoyl-isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 117 (2015) 388–399. [DOI] [PMID: 26164240]
3.  Bruckhoff, V., Haroth, S., Feussner, K., Konig, S., Brodhun, F. and Feussner, I. Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLoS One 11 (2016) e0159875. [DOI] [PMID: 27459369]
[EC 1.14.14.49 created 2017]
 
 
EC 2.1.1.141     
Accepted name: jasmonate O-methyltransferase
Reaction: S-adenosyl-L-methionine + jasmonate = S-adenosyl-L-homocysteine + methyl jasmonate
Glossary: jasmonic acid = {(1R,2R)-3-oxo-2-[(Z)pent-2-enyl]cyclopent-2-enyl}acetic acid
Other name(s): jasmonic acid carboxyl methyltransferase
Systematic name: S-adenosyl-L-methionine:jasmonate O-methyltransferase
Comments: 9,10-Dihydrojasmonic acid is a poor substrate for the enzyme. The enzyme does not convert 12-oxo-phytodienoic acid (a precursor of jasmonic acid), salicylic acid, benzoic acid, linolenic acid or cinnamic acid into their corresponding methyl esters. Enzyme activity is inhibited by the presence of divalent cations, e.g., Ca2+, Cu2+, Mg2+ and Zn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 346420-58-4
References:
1.  Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S. and Choi, Y.D. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 98 (2001) 4788–4793. [DOI] [PMID: 11287667]
[EC 2.1.1.141 created 2001]
 
 
EC 3.5.1.127     
Accepted name: jasmonoyl-L-amino acid hydrolase
Reaction: a jasmonoyl-L-amino acid + H2O = jasmonate + an L-amino acid
Glossary: tuberonic acid = 12-hydroxyjasmonate = {(1R,2R)-2-[(2Z)-5-hydroxypent-2-enyl]-3-oxo-cyclopentyl}acetate
jasmonate = {(1R,2R)-3-oxo-2-[(2Z)-pent-2-enyl]cyclopentyl}acetate
Other name(s): IAR3 (gene name); ILL4 (gene name); ILL6 (gene name)
Systematic name: jasmonoyl-L amino acid amidohydrolase
Comments: This entry includes a family of enzymes that recyle jasmonoyl-amino acid conjugates back to jasmonates. The enzymes from Arabidopsis thaliana have been shown to also act on 12-hydroxyjasmonoyl-L-isoleucine, generating tuberonic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Widemann, E., Miesch, L., Lugan, R., Holder, E., Heinrich, C., Aubert, Y., Miesch, M., Pinot, F. and Heitz, T. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J. Biol. Chem. 288 (2013) 31701–31714. [DOI] [PMID: 24052260]
[EC 3.5.1.127 created 2017]
 
 
EC 6.2.1.46     
Accepted name: L-allo-isoleucine—holo-[CmaA peptidyl-carrier protein] ligase
Reaction: ATP + L-allo-isoleucine + holo-[CmaA peptidyl-carrier protein] = AMP + diphosphate + L-allo-isoleucyl-[CmaA peptidyl-carrier protein]
Other name(s): CmaA
Systematic name: L-allo-isoleucine:holo-[CmaA peptidyl-carrier protein] ligase (AMP-forming)
Comments: This two-domain protein from the bacterium Pseudomonas syringae contains an adenylation domain (A domain) and a thiolation domain (T domain). It catalyses the adenylation of L-allo-isoleucine and its attachment to the T domain. The enzyme is involved in the biosynthesis of the toxin coronatine, which mimics the plant hormone jasmonic acid isoleucine. Coronatine promotes opening of the plant stomata allowing bacterial invasion, which is followed by bacterial growth in the apoplast, systemic susceptibility, and disease.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Couch, R., O'Connor, S.E., Seidle, H., Walsh, C.T. and Parry, R. Characterization of CmaA, an adenylation-thiolation didomain enzyme involved in the biosynthesis of coronatine. J. Bacteriol. 186 (2004) 35–42. [DOI] [PMID: 14679222]
[EC 6.2.1.46 created 2015]
 
 
EC 6.3.2.52     
Accepted name: jasmonoyl—L-amino acid ligase
Reaction: ATP + jasmonate + an L-amino acid = AMP + diphosphate + a jasmonoyl-L-amino acid
Other name(s): JAR1 (gene name); JAR4 (gene name); JAR6 (gene name); jasmonoyl—L-amino acid synthetase
Systematic name: jasmonate:L-amino acid ligase
Comments: Two jasmonoyl-L-amino acid synthetases have been described from Nicotiana attenuata [3] and one from Arabidopsis thaliana [1]. The N. attenuata enzymes generate jasmonoyl-L-isoleucine, jasmonoyl-L-leucine, and jasmonoyl-L-valine. The enzyme from A. thaliana could catalyse the addition of many different amino acids to jasmonate in vitro [1,4,5]. While the abundant form of jasmonate in plants is (–)-jasmonate, the active form of jasmonoyl-L-isoleucine is (+)-7-iso-jasmonoyl-L-isoleucine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Staswick, P.E. and Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16 (2004) 2117–2127. [DOI] [PMID: 15258265]
2.  Kang, J.H., Wang, L., Giri, A. and Baldwin, I.T. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18 (2006) 3303–3320. [DOI] [PMID: 17085687]
3.  Wang, L., Halitschke, R., Kang, J.H., Berg, A., Harnisch, F. and Baldwin, I.T. Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226 (2007) 159–167. [DOI] [PMID: 17273867]
4.  Guranowski, A., Miersch, O., Staswick, P.E., Suza, W. and Wasternack, C. Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1). FEBS Lett. 581 (2007) 815–820. [DOI] [PMID: 17291501]
5.  Suza, W.P. and Staswick, P.E. The role of JAR1 in jasmonoyl-L-isoleucine production during Arabidopsis wound response. Planta 227 (2008) 1221–1232. [DOI] [PMID: 18247047]
[EC 6.3.2.52 created 2018, modified 2019]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald