The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version

Accepted name: pyruvate dehydrogenase (NADP+)
Reaction: pyruvate + CoA + NADP+ = acetyl-CoA + CO2 + NADPH
Systematic name: pyruvate:NADP+ 2-oxidoreductase (CoA-acetylating)
Comments: The Euglena enzyme can also use FAD or methylviologen as acceptor, more slowly. The enzyme is inhibited by oxygen.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 93389-35-6
1.  Inui, H., Miyatake, K., Nakano, Y. and Kitaoka, S. Occurrence of oxygen-sensitive, NADP +-dependent pyruvate dehydrogenase in mitochondria of Euglena gracilis. J. Biochem. (Tokyo) 96 (1984) 931–934. [PMID: 6438078]
2.  Inui, H., Ono, K., Miyatake, K., Nakano, Y. and Kitaoka, S. Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis. J. Biol. Chem. 262 (1987) 9130–9135. [PMID: 3110154]
[EC created 1989]
Accepted name: aldehyde ferredoxin oxidoreductase
Reaction: an aldehyde + H2O + 2 oxidized ferredoxin = a carboxylate + 2 H+ + 2 reduced ferredoxin
Other name(s): AOR
Systematic name: aldehyde:ferredoxin oxidoreductase
Comments: This is an oxygen-sensitive enzyme that contains tungsten-molybdopterin and iron-sulfur clusters. Catalyses the oxidation of aldehydes (including crotonaldehyde, acetaldehyde, formaldehyde and glyceraldehyde) to their corresponding acids. However, it does not oxidize glyceraldehyde 3-phosphate [see EC, glyceraldehyde-3-phosphate dehydrogenase (ferredoxin)]. Can use ferredoxin or methylviologen but not NAD(P)+ as electron acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 138066-90-7
1.  Mukund, S. and Adams, M.W.W. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase - evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266 (1991) 14208–14216. [PMID: 1907273]
2.  Johnson, J.L., Rajagopalan, K.V., Mukund, S. and Adams, M.W.W. Identification of molybdopterin as the organic-component of the tungsten cofactor in four enzymes from hyperthermophilic archaea. J. Biol. Chem. 268 (1993) 4848–4852. [PMID: 8444863]
3.  Chan, M.K., Mukund, S., Kletzin, A., Adams, M.W.W. and Rees, D.C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267 (1995) 1463–1469. [DOI] [PMID: 7878465]
4.  Roy, R., Menon, A.L. and Adams, M.W.W. Aldehyde oxidoreductases from Pyrococcus furiosus. Methods Enzymol. 331 (2001) 132–144. [DOI] [PMID: 11265456]
[EC created 2003]
Transferred entry: formylmethanofuran dehydrogenase. Now EC, formylmethanofuran dehydrogenase
[EC created 1992, deleted 2017]
Accepted name: carboxylate reductase
Reaction: an aldehyde + acceptor + H2O = a carboxylate + reduced acceptor
Other name(s): aldehyde:(acceptor) oxidoreductase
Systematic name: aldehyde:acceptor oxidoreductase
Comments: A tungsten protein. Methylviologen can act as acceptor. In the reverse direction, non-activated acids are reduced by reduced viologens to aldehydes, but not to the corresponding alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 125008-36-8
1.  White, H., Strobl, G., Feicht, R. and Simon, H. Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur. J. Biochem. 184 (1989) 89–96. [DOI] [PMID: 2550230]
[EC created 1992]
Accepted name: urocanate reductase
Reaction: dihydrourocanate + acceptor = urocanate + reduced acceptor
For diagram of histidine catabolism, click here
Glossary: urocanate = 3-(1H-imidazol-4-yl)prop-2-enoate
dihydrourocanate = 3-(1H-imidazol-4-yl)propanoate
Other name(s): urdA (gene name)
Systematic name: dihydrourocanate:acceptor oxidoreductase
Comments: The enzyme from the bacterium Shewanella oneidensis MR-1 contains a noncovalently-bound FAD and a covalently-bound FMN. It functions as part of an anaerobic electron transfer chain that utilizes urocanate as the terminal electron acceptor. The activity has been demonstrated with the artificial donor reduced methylviologen.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Bogachev, A.V., Bertsova, Y.V., Bloch, D.A. and Verkhovsky, M.I. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol. Microbiol. 86 (2012) 1452–1463. [DOI] [PMID: 23078170]
[EC created 2013]
Accepted name: adenylyl-sulfate reductase
Reaction: AMP + sulfite + acceptor = adenylyl sulfate + reduced acceptor
Other name(s): adenosine phosphosulfate reductase; adenosine 5′-phosphosulfate reductase; APS-reductase; APS reductase; AMP, sulfite:(acceptor) oxidoreductase (adenosine-5′-phosphosulfate-forming)
Systematic name: AMP,sulfite:acceptor oxidoreductase (adenosine-5′-phosphosulfate-forming)
Comments: An iron flavoprotein (FAD). Methylviologen can act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9027-75-2
1.  Michaels, G.B., Davidson, J.T. and Peck, H.D., Jr. A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate reductase from Desulfovibrio vulgaris. Biochem. Biophys. Res. Commun. 39 (1970) 321–328. [DOI] [PMID: 5421934]
[EC created 1972]
Deleted entry: hydrogensulfite reductase, now known to be an in vitro artifact of EC, dissimilatory sulfite reductase
[EC created 1986, deleted 2016]
Accepted name: hydrogen:quinone oxidoreductase
Reaction: H2 + menaquinone = menaquinol
Other name(s): hydrogen-ubiquinone oxidoreductase; hydrogen:menaquinone oxidoreductase; membrane-bound hydrogenase; quinone-reactive Ni/Fe-hydrogenase
Systematic name: hydrogen:quinone oxidoreductase
Comments: Contains nickel, iron-sulfur clusters and cytochrome b. Also catalyses the reduction of water-soluble quinones (e.g. 2,3-dimethylnaphthoquinone) or viologen dyes (benzylviologen or methylviologen).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 151616-65-8
1.  Dross, F., Geisler, V., Lenger, R., Theis, F., Krafft, T., Fahrenholz, F., Kojro, E. , Duchêne, A., Tripier, D., Juvenal, K. and Kröger, A. The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur. J. Biochem. 206 (1992) 93–102. [DOI] [PMID: 1587288]
2.  Dross, F., Geisler, V., Lenger, R., Theis, F., Krafft, T., Fahrenholz, F., Kojro, E., Duchene, A., Tripier, D. and Juvenal, K. Erratum to "The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes". Eur. J. Biochem. 214 (1993) 949–950. [DOI] [PMID: 8319698]
3.  Gross, R., Simon, J., Lancaster, C.R.D. and Kroger, A. Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H-2. Mol. Microbiol. 30 (1998) 639–646. [DOI] [PMID: 9822828]
4.  Bernhard, M., Benelli, B., Hochkoeppler, A., Zannoni, D. and Friedrich, B. Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. Eur. J. Biochem. 248 (1997) 179–186. [DOI] [PMID: 9310376]
5.  Ferber, D.M. and Maier, R.J. Hydrogen-ubiquinone oxidoreductase activity by the Bradyrhizobium japonicum membrane-bound hydrogenase. FEMS Microbiol. Lett. 110 (1993) 257–264. [DOI] [PMID: 8354459]
6.  Ishii, M., Omori, T., Igarashi, Y., Adachi, O., Ameyama, M. and Kodama, T. Methionaquinone is a direct natural electron-acceptor for the membrane-bound hydrogenase in Hydrogenobacter thermophilus strain TK-6. Agric. Biol. Chem. 55 (1991) 3011–3016.
[EC created 1999 as EC, transferred 2002 to EC]
Accepted name: coenzyme F420 hydrogenase
Reaction: H2 + oxidized coenzyme F420 = reduced coenzyme F420
For diagram of reaction, click here
Glossary: coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): 8-hydroxy-5-deazaflavin-reducing hydrogenase; F420-reducing hydrogenase; coenzyme F420-dependent hydrogenase
Systematic name: hydrogen:coenzyme F420 oxidoreductase
Comments: An iron-sulfur flavoprotein (FAD) containing nickel. The enzyme from some sources contains selenocysteine. The enzyme also reduces the riboflavin analogue of F420, flavins and methylviologen, but to a lesser extent. The hydrogen acceptor coenzyme F420 is a deazaflavin derivative.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9027-05-8
1.  Adams, M.W.W., Mortenson, L.E. and Chen, J.-S. Hydrogenase. Biochim. Biophys. Acta 594 (1981) 105–176. [PMID: 6786341]
2.  Yamazaki, S. A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue. J. Biol. Chem. 257 (1982) 7926–7929. [PMID: 6211447]
3.  Fox, J.A., Livingston, D.J., Orme-Johnson, W.H. and Walsh, C.T. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization. Biochemistry 26 (1987) 4219–4228. [PMID: 3663585]
4.  Muth, E., Morschel, E. and Klein, A. Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae. Eur. J. Biochem. 169 (1987) 571–577. [DOI] [PMID: 3121317]
5.  Baron, S.F. and Ferry, J.G. Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum. J. Bacteriol. 171 (1989) 3846–3853. [DOI] [PMID: 2738024]
[EC created 1989 as EC, transferred 2002 to EC]
Accepted name: Methanosarcina-phenazine hydrogenase
Reaction: H2 + 2-(2,3-dihydropentaprenyloxy)phenazine = 2-dihydropentaprenyloxyphenazine
Other name(s): methanophenazine hydrogenase; methylviologen-reducing hydrogenase
Systematic name: hydrogen:2-(2,3-dihydropentaprenyloxy)phenazine oxidoreductase
Comments: Contains nickel, iron-sulfur clusters and cytochrome b. The enzyme from some sources contains selenocysteine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9027-05-8
1.  Abken, H.J., Tietze, M., Brodersen, J., Bäumer, S., Beifuss, U. and Deppenmeier, U. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei gol. J. Bacteriol. 180 (1998) 2027–2032. [PMID: 9555882]
2.  Deppenmeier, U., Lienard, T. and Gottschalk, G. Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett. 457 (1999) 291–297. [DOI] [PMID: 10471795]
3.  Beifuss, U., Tietze, M., Baumer, S. and Deppenmeier, U. Methanophenazine: structure, total synthesis, and function of a new cofactor from methanogenic Archaea. Angew. Chem. Int. Ed. Engl. 39 (2000) 2470–2472. [DOI] [PMID: 10941105]
[EC created 2002]
Accepted name: tetrachloroethene reductive dehalogenase
Reaction: trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
Glossary: methylviologen = 1,1′-dimethyl-4,4′-bipyridine-1,1′-diium
Other name(s): tetrachloroethene reductase
Systematic name: acceptor:trichloroethene oxidoreductase (chlorinating)
Comments: This enzyme allows the common pollutant tetrachloroethene to support bacterial growth and is responsible for disposal of a number of chlorinated hydrocarbons. The reaction occurs in the reverse direction. The enzyme also reduces trichloroethene to dichloroethene. Although the physiological reductant is unknown, the supply of reductant in some organisms involves menaquinol, which is reduced by molecular hydrogen via the action of EC, hydrogen:quinone oxidoreductase. The enzyme contains a corrinoid and two iron-sulfur clusters. Methylviologen can act as electron donor in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 163913-51-7
1.  Holliger, C, Wohlfarth, G. and Diekert, G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22 (1998) 383–398.
2.  Glod, G., Angst, W., Holliger, C. and Schwarzenbach, R.P. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environ. Sci. Technol. 31 (1997) 253–260.
3.  Neumann, A., Wohlfarth, G. and Diekert, G. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J. Biol. Chem. 271 (1996) 16515–16519. [DOI] [PMID: 8663199]
4.  Schumacher, W., Holliger, C., Zehnder, A.J.B. and Hagen, W.R. Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett. 409 (1997) 421–425. [DOI] [PMID: 9224702]
5.  Schumacher, W. and Holliger, C. The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in "Dehalobacter restrictus". J. Bacteriol. 178 (1996) 2328–2333. [DOI] [PMID: 8636034]
[EC created 2001 as EC, transferred 2017 to EC]

Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald