The Enzyme Database

Displaying entries 1-50 of 2141.

<< Previous | Next >>    printer_iconPrintable version



EC 1.1.1.3     
Accepted name: homoserine dehydrogenase
Reaction: L-homoserine + NAD(P)+ = L-aspartate 4-semialdehyde + NAD(P)H + H+
For diagram of threonine biosynthesis, click here
Other name(s): HSDH; HSD
Systematic name: L-homoserine:NAD(P)+ oxidoreductase
Comments: The yeast enzyme acts most rapidly with NAD+; the Neurospora enzyme with NADP+. The enzyme from Escherichia coli is a multi-functional protein, which also catalyses the reaction of EC 2.7.2.4 (aspartate kinase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-13-1
References:
1.  Black, S. and Wright, N.G. Homoserine dehydrogenase. J. Biol. Chem. 213 (1955) 51–60. [PMID: 14353905]
2.  Starnes, W.L., Munk, P., Maul, S.B., Cunningham, G.N., Cox, D.J. and Shive, W. Threonine-sensitive aspartokinase-homoserine dehydrogenase complex, amino acid composition, molecular weight, and subunit composition of the complex. Biochemistry 11 (1972) 677–687. [PMID: 4551091]
3.  Véron, M., Falcoz-Kelly, F. and Cohen, G.N. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. The two catalytic activities are carried by two independent regions of the polypeptide chain. Eur. J. Biochem. 28 (1972) 520–527. [DOI] [PMID: 4562990]
[EC 1.1.1.3 created 1961, modified 1976]
 
 
EC 1.1.1.8     
Accepted name: glycerol-3-phosphate dehydrogenase (NAD+)
Reaction: sn-glycerol 3-phosphate + NAD+ = glycerone phosphate + NADH + H+
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): α-glycerol phosphate dehydrogenase (NAD+); α-glycerophosphate dehydrogenase (NAD+); glycerol 1-phosphate dehydrogenase; glycerol phosphate dehydrogenase (NAD+); glycerophosphate dehydrogenase (NAD+); hydroglycerophosphate dehydrogenase; L-α-glycerol phosphate dehydrogenase; L-α-glycerophosphate dehydrogenase; L-glycerol phosphate dehydrogenase; L-glycerophosphate dehydrogenase (ambiguous); NAD+-α-glycerophosphate dehydrogenase; NAD+-dependent glycerol phosphate dehydrogenase; NAD+-dependent glycerol-3-phosphate dehydrogenase; NAD+-L-glycerol-3-phosphate dehydrogenase; NAD+-linked glycerol 3-phosphate dehydrogenase; NADH-dihydroxyacetone phosphate reductase; glycerol-3-phosphate dehydrogenase (NAD+); L-glycerol-3-phosphate dehydrogenase (ambiguous)
Systematic name: sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase
Comments: Also acts on propane-1,2-diol phosphate and glycerone sulfate (but with a much lower affinity).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9075-65-4
References:
1.  Baranowski, T. α-Glycerophosphate dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 85–96.
2.  Brosemer, R.W. and Kuhn, R.W. Comparative structural properties of honeybee and rabbit α-glycerophosphate dehydrogenases. Biochemistry 8 (1969) 2095–2105. [PMID: 4307630]
3.  O'Brien, S.J. and MacIntyre, R.J. The α-glycerophosphate cycle in Drosophila melanogaster. I. Biochemical and developmental aspects. Biochem. Genet. 7 (1972) 141–161. [PMID: 4340553]
4.  Warkentin, K.L. and Fondy, T.P. Isolation and characterization of cytoplasmic L-glycerol-3-phosphate dehydrogenase from rabbit-renal-adipose tissue and its comparison with the skeletal-muscle enzyme. Eur. J. Biochem. 36 (1973) 97–109. [DOI] [PMID: 4200180]
5.  Albertyn, J., van Tonder, A. and Prior, B.A. Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. FEBS Lett. 308 (1992) 130–132. [DOI] [PMID: 1499720]
6.  Koekemoer, T.C., Litthauer, D. and Oelofsen, W. Isolation and characterization of adipose tissue glycerol-3-phosphate dehydrogenase. Int. J. Biochem. Cell Biol. 27 (1995) 625–632. [DOI] [PMID: 7671141]
[EC 1.1.1.8 created 1961, modified 2005]
 
 
EC 1.1.1.9     
Accepted name: D-xylulose reductase
Reaction: xylitol + NAD+ = D-xylulose + NADH + H+
Other name(s): NAD+-dependent xylitol dehydrogenase; xylitol dehydrogenase (ambiguous); erythritol dehydrogenase; 2,3-cis-polyol(DPN) dehydrogenase (C3-5); pentitol-DPN dehydrogenase (ambiguous); xylitol-2-dehydrogenase
Systematic name: xylitol:NAD+ 2-oxidoreductase (D-xylulose-forming)
Comments: Also acts as an L-erythrulose reductase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9028-16-4
References:
1.  Chiang, C. and Knight, S.G. A new pathway of pentose metabolism. Biochem. Biophys. Res. Commun. 3 (1960) 554–559. [PMID: 13692998]
2.  Hickman, J. and Ashwell, G. A sensitive and stereospecific enzymatic assay for xylulose. J. Biol. Chem. 234 (1959) 758–761. [PMID: 13654257]
3.  Jakoby, W.B. and Fredericks, J. Erythritol dehydrogenase from Aerobacter aerogenes. Biochim. Biophys. Acta 48 (1961) 26–32. [DOI] [PMID: 13789254]
[EC 1.1.1.9 created 1961]
 
 
EC 1.1.1.12     
Accepted name: L-arabinitol 4-dehydrogenase
Reaction: L-arabinitol + NAD+ = L-xylulose + NADH + H+
For diagram of L-arabinose catabolism, click here
Other name(s): pentitol-DPN dehydrogenase (ambiguous); L-arabitol dehydrogenase
Systematic name: L-arabinitol:NAD+ 4-oxidoreductase (L-xylulose-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-19-7
References:
1.  Chiang, C. and Knight, S.G. A new pathway of pentose metabolism. Biochem. Biophys. Res. Commun. 3 (1960) 554–559. [PMID: 13692998]
2.  Chiang, C. and Knight, S.G. L-Arabinose metabolism by cell-free extracts of Penicillium chrysogenum. Biochim. Biophys. Acta 46 (1961) 271–278. [DOI] [PMID: 13692999]
[EC 1.1.1.12 created 1961]
 
 
EC 1.1.1.14     
Accepted name: L-iditol 2-dehydrogenase
Reaction: L-iditol + NAD+ = L-sorbose + NADH + H+
Other name(s): polyol dehydrogenase; sorbitol dehydrogenase; L-iditol:NAD+ 5-oxidoreductase; L-iditol (sorbitol) dehydrogenase; glucitol dehydrogenase; L-iditol:NAD+ oxidoreductase; NAD+-dependent sorbitol dehydrogenase; NAD+-sorbitol dehydrogenase
Systematic name: L-iditol:NAD+ 2-oxidoreductase
Comments: This enzyme is widely distributed and has been described in archaea, bacteria, yeast, plants and animals. It acts on a number of sugar alcohols, including (but not limited to) L-iditol, D-glucitol, D-xylitol, and D-galactitol. Enzymes from different organisms or tissues display different substrate specificity. The enzyme is specific to NAD+ and can not use NADP+.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-21-1
References:
1.  Bailey, J.P., Renz, C. and McGuinness, E.T. Sorbitol dehydrogenase from horse liver: purification, characterization and comparative properties. Comp. Biochem. Physiol. 69B (1981) 909–914.
2.  Burnell, J.N. and Holmes, R.S. Purification and properties of sorbitol dehydrogenase from mouse liver. Int. J. Biochem. 15 (1983) 507–511. [PMID: 6852349]
3.  Leissing, N. and McGuinness, E.T. Rapid affinity purification and properties of rat liver sorbitol dehydrogenase. Biochim. Biophys. Acta 524 (1978) 254–261. [DOI] [PMID: 667078]
4.  Negm, F.B. and Loescher, W.H. Detection and characterization of sorbitol dehydrogenase from apple callus tissue. Plant Physiol. 64 (1979) 69–73. [PMID: 16660917]
5.  O'Brien, M.M., Schofield, P.J. and Edwards, M.R. Polyol-pathway enzymes of human brain. Partial purification and properties of sorbitol dehydrogenase. Biochem. J. 211 (1983) 81–90. [PMID: 6870831]
6.  Ng, K., Ye, R., Wu, X.C. and Wong, S.L. Sorbitol dehydrogenase from Bacillus subtilis. Purification, characterization, and gene cloning. J. Biol. Chem. 267 (1992) 24989–24994. [PMID: 1460002]
[EC 1.1.1.14 created 1961, modified 2011]
 
 
EC 1.1.1.23     
Accepted name: histidinol dehydrogenase
Reaction: L-histidinol + 2 NAD+ + H2O = L-histidine + 2 NADH + 3 H+
Other name(s): L-histidinol dehydrogenase
Systematic name: L-histidinol:NAD+ oxidoreductase
Comments: Also oxidizes L-histidinal. The Neurospora enzyme also catalyses the reactions of EC 3.5.4.19 (phosphoribosyl-AMP cyclohydrolase) and EC 3.6.1.31 (phosphoribosyl-ATP diphosphatase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-27-7
References:
1.  Adams, E. Enzymatic synthesis of histidine from histidinol. J. Biol. Chem. 209 (1954) 829–846. [PMID: 13192138]
2.  Adams, E. L-Histidinal, a biosynthetic precursor of histidine. J. Biol. Chem. 217 (1955) 325–344. [PMID: 13271397]
3.  Loper, J.C. Histidinol dehydrogenase from Salmonella typhimurium. Crystallization and composition studies. J. Biol. Chem. 243 (1968) 3264–3272. [PMID: 4872177]
4.  Yourno, J. and Ino, I. Purification and crystallization of histidinol dehydrogenase from Salmonella typhimurium LT-2. J. Biol. Chem. 243 (1968) 3273–3276. [PMID: 4872176]
[EC 1.1.1.23 created 1961]
 
 
EC 1.1.1.24     
Accepted name: quinate/shikimate dehydrogenase (NAD+)
Reaction: L-quinate + NAD+ = 3-dehydroquinate + NADH + H+
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: quinate = (1R,3R,4R,5R)-1,3,4,5-tetrahydroxycyclohexanecarboxylic acid and is a cyclitol carboxylate
The numbering system used for the 3-dehydroquinate is that of the recommendations on cyclitols, sections I-8 and I-9: and is shown in the reaction diagram. The use of the term '5-dehydroquinate' for this compound is based on an earlier system of numbering.
Other name(s): quinate dehydrogenase (ambiguous); quinic dehydrogenase (ambiguous); quinate:NAD oxidoreductase; quinate 5-dehydrogenase (ambiguous); quinate:NAD+ 5-oxidoreductase
Systematic name: L-quinate:NAD+ 3-oxidoreductase
Comments: The enzyme, found mostly in bacteria (mostly, but not exclusively in Gram-positive bacteria), fungi, and plants, participates in the degradation of quinate and shikimate with a strong preference for NAD+ as a cofactor. While the enzyme can act on both quinate and shikimate, activity is higher with the former. cf. EC 1.1.5.8, quinate/shikimate dehydrogenase (quinone), EC 1.1.1.282, quinate/shikimate dehydrogenase [NAD(P)+], and EC 1.1.1.25, shikimate dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9028-28-8
References:
1.  Mitsuhashi, S. and Davis, B.D. Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. Biophys. Acta 15 (1954) 268–280. [DOI] [PMID: 13208693]
2.  Gamborg, O.L. Aromatic metabolism in plants. III. Quinate dehydrogenase from mung bean cell suspension cultures. Biochim. Biophys. Acta 128 (1966) 483–491.
3.  Hawkins, A.R., Giles, N.H. and Kinghorn, J.R. Genetical and biochemical aspects of quinate breakdown in the filamentous fungus Aspergillus nidulans. Biochem. Genet. 20 (1982) 271–286. [PMID: 7049157]
4.  Singh, S., Stavrinides, J., Christendat, D. and Guttman, D.S. A phylogenomic analysis of the shikimate dehydrogenases reveals broadscale functional diversification and identifies one functionally distinct subclass. Mol. Biol. Evol. 25 (2008) 2221–2232. [DOI] [PMID: 18669580]
5.  Teramoto, H., Inui, M. and Yukawa, H. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75 (2009) 3461–3468. [DOI] [PMID: 19376919]
6.  Kubota, T., Tanaka, Y., Hiraga, K., Inui, M. and Yukawa, H. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 97 (2013) 8139–8149. [DOI] [PMID: 23306642]
7.  Peek, J. and Christendat, D. The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework. Arch. Biochem. Biophys. 566 (2015) 85–99. [DOI] [PMID: 25524738]
[EC 1.1.1.24 created 1961, modified 1976, modified 2004, modified 2021]
 
 
EC 1.1.1.25     
Accepted name: shikimate dehydrogenase (NADP+)
Reaction: shikimate + NADP+ = 3-dehydroshikimate + NADPH + H+
For diagram of shikimate and chorismate biosynthesis, click here
Other name(s): shikimate dehydrogenase; dehydroshikimic reductase; shikimate oxidoreductase; shikimate:NADP+ oxidoreductase; 5-dehydroshikimate reductase; shikimate 5-dehydrogenase; 5-dehydroshikimic reductase; DHS reductase; shikimate:NADP+ 5-oxidoreductase; AroE
Systematic name: shikimate:NADP+ 3-oxidoreductase
Comments: NAD+ cannot replace NADP+ [3]. In higher organisms, this enzyme forms part of a multienzyme complex with EC 4.2.1.10, 3-dehydroquinate dehydratase [4]. cf. EC 1.1.1.24, quinate/shikimate dehydrogenase (NAD+), EC 1.1.5.8, quinate/shikimate dehydrogenase (quinone), and EC 1.1.1.282, quinate/shikimate dehydrogenase [NAD(P)+].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-87-3
References:
1.  Mitsuhashi, S. and Davis, B.D. Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. Biophys. Acta 15 (1954) 268–280. [DOI] [PMID: 13208693]
2.  Yaniv, H. and Gilvarg, C. Aromatic biosynthesis. XIV. 5-Dehydroshikimic reductase. J. Biol. Chem. 213 (1955) 787–795. [PMID: 14367339]
3.  Balinsky, D. and Davies, D.D. Aromatic biosynthesis in higher plants. 1. Preparation and properties of dehydroshikimic reductase. Biochem. J. 80 (1961) 292–296. [PMID: 13686342]
4.  Chaudhuri, S. and Coggins, J.R. The purification of shikimate dehydrogenase from Escherichia coli. Biochem. J. 226 (1985) 217–223. [PMID: 3883995]
5.  Anton, I.A. and Coggins, J.R. Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Biochem. J. 249 (1988) 319–326. [PMID: 3277621]
6.  Ye, S., Von Delft, F., Brooun, A., Knuth, M.W., Swanson, R.V. and McRee, D.E. The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode. J. Bacteriol. 185 (2003) 4144–4151. [DOI] [PMID: 12837789]
[EC 1.1.1.25 created 1961, modified 1976, modified 2004, modified 2021]
 
 
EC 1.1.1.42     
Accepted name: isocitrate dehydrogenase (NADP+)
Reaction: isocitrate + NADP+ = 2-oxoglutarate + CO2 + NADPH + H+ (overall reaction)
(1a) isocitrate + NADP+ = oxalosuccinate + NADPH + H+
(1b) oxalosuccinate = 2-oxoglutarate + CO2
For diagram of the citric-acid cycle, click here
Glossary: isocitrate = (1R,2S)-1-hydroxypropane-1,2,3-tricarboxylate (previously known as threo-Ds-isocitrate)
oxalosuccinate = 1-oxopropane-1,2,3-tricarboxylate
Other name(s): oxalosuccinate decarboxylase; oxalsuccinic decarboxylase; isocitrate (NADP) dehydrogenase; isocitrate (nicotinamide adenine dinucleotide phosphate) dehydrogenase; NADP-specific isocitrate dehydrogenase; NADP-linked isocitrate dehydrogenase; NADP-dependent isocitrate dehydrogenase; NADP isocitric dehydrogenase; isocitrate dehydrogenase (NADP-dependent); NADP-dependent isocitric dehydrogenase; triphosphopyridine nucleotide-linked isocitrate dehydrogenase-oxalosuccinate carboxylase; NADP+-linked isocitrate dehydrogenase; IDH (ambiguous); dual-cofactor-specific isocitrate dehydrogenase; NADP+-ICDH; NADP+-IDH; IDP; IDP1; IDP2; IDP3
Systematic name: isocitrate:NADP+ oxidoreductase (decarboxylating)
Comments: Requires Mn2+ or Mg2+ for activity. Unlike EC 1.1.1.41, isocitrate dehydrogenase (NAD+), oxalosuccinate can be used as a substrate. In eukaryotes, isocitrate dehydrogenase exists in two forms: an NAD+-linked enzyme found only in mitochondria and displaying allosteric properties, and a non-allosteric, NADP+-linked enzyme that is found in both mitochondria and cytoplasm [6]. The enzyme from some species can also use NAD+ but much more slowly [6,7].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-48-2
References:
1.  Agosin, M.U. and Weinbach, E.C. Partial purification and characterization of the isocitric dehydrogenase from Trypanosoma cruzi. Biochim. Biophys. Acta 21 (1956) 117–126. [DOI] [PMID: 13363868]
2.  Moyle, J. and Dixon, M. Purification of the isocitrate enzyme (triphosphopyridine nucleotide-linked isocitrate dehydrogenase-oxalosuccinate carboxylase). Biochem. J. 63 (1956) 548–552. [PMID: 13355848]
3.  Plaut, G.W.E. Isocitrate dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 105–126.
4.  Siebert, G., Dubuc, J., Warner, R.C. and Plaut, G.W.E. The preparation of isocitrate dehydrogenase from mammalian heart. J. Biol. Chem. 226 (1957) 965–975. [PMID: 13438885]
5.  Vickery, H.B. A suggested new nomenclature for the isomers of isocitric acid. J. Biol. Chem. 237 (1962) 1739–1741. [PMID: 13925783]
6.  Camacho, M.L., Brown, R.A., Bonete, M.J., Danson, M.J. and Hough, D.W. Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol. Lett. 134 (1995) 85–90. [DOI] [PMID: 8593959]
7.  Steen, I.H., Lien, T. and Birkeland, N.-K. Biochemical and phylogenetic characterization of isocitrate dehydrogenase from a hyperthermophilic archaeon, Archaeoglobus fulgidus. Arch. Microbiol. 168 (1997) 412–420. [PMID: 9325430]
8.  Koh, H.J., Lee, S.M., Son, B.G., Lee, S.H., Ryoo, Z.Y., Chang, K.T., Park, J.W., Park, D.C., Song, B.J., Veech, R.L., Song, H. and Huh, T.L. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J. Biol. Chem. 279 (2004) 39968–39974. [DOI] [PMID: 15254034]
9.  Ceccarelli, C., Grodsky, N.B., Ariyaratne, N., Colman, R.F. and Bahnson, B.J. Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism. J. Biol. Chem. 277 (2002) 43454–43462. [DOI] [PMID: 12207025]
[EC 1.1.1.42 created 1961, modified 2005]
 
 
EC 1.1.1.50     
Accepted name: 3α-hydroxysteroid 3-dehydrogenase (Si-specific)
Reaction: a 3α-hydroxysteroid + NAD(P)+ = a 3-oxosteroid + NAD(P)H + H+
Other name(s): hydroxyprostaglandin dehydrogenase; 3α-hydroxysteroid oxidoreductase; sterognost 3α; 3α-hydroxysteroid dehydrogenase (B-specific); 3α-hydroxysteroid 3-dehydrogenase (B-specific); 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (B-specific)
Systematic name: 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (Si-specific)
Comments: The enzyme acts on androsterone and other 3α-hydroxysteroids and on 9-, 11- and 15-hydroxyprostaglandin. Si-specific with respect to NAD+ or NADP+. cf. EC 1.1.1.213, 3α-hydroxysteroid 3-dehydrogenase (Re-specific).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-56-2
References:
1.  Jarabak, J. and Talalay, P. Stereospecificity of hydrogen transfer by pyridine nucleotide-linked hydroxysteroid hydrogenase. J. Biol. Chem. 235 (1960) 2147–2151. [PMID: 14406805]
2.  Kochakian, C.D., Carroll, B.R. and Uhri, B. Comparisons of the oxidation of C19-hydroxysteroids by guinea pig liver homogenates. J. Biol. Chem. 224 (1957) 811–818. [PMID: 13405910]
3.  Marcus, P.I. and Talalay, P. Induction and purification of α- and β-hydroxysteroid dehydrogenases. J. Biol. Chem. 218 (1956) 661–674. [PMID: 13295221]
4.  Penning, T.M. and Sharp, R.B. Prostaglandin dehydrogenase activity of purified rat liver 3α-hydroxysteroid dehydrogenase. Biochem. Biophys. Res. Commun. 148 (1987) 646–652. [DOI] [PMID: 3479982]
[EC 1.1.1.50 created 1961, modified 1986, modified 1990, modified 2012, modified 2013]
 
 
EC 1.1.1.53     
Accepted name: 3α(or 20β)-hydroxysteroid dehydrogenase
Reaction: androstan-3α,17β-diol + NAD+ = 17β-hydroxyandrostan-3-one + NADH + H+
Other name(s): cortisone reductase; (R)-20-hydroxysteroid dehydrogenase; 20β-hydroxy steroid dehydrogenase; Δ4-3-ketosteroid hydrogenase; 20β-hydroxysteroid dehydrogenase; 3α,20β-hydroxysteroid:NAD+-oxidoreductase; NADH-20β-hydroxysteroid dehydrogenase; 20β-HSD
Systematic name: 3α(or 20β)-hydroxysteroid:NAD+ oxidoreductase
Comments: The 3α-hydroxy group or 20β-hydroxy group of pregnane and androstane steroids can act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-42-6
References:
1.  Edwards, C.A.F. and Orr, J.C. Comparison of the 3α-and 20β-hydroxysteroid dehydrogenase activities of the cortisone reductase of Streptomyces hydrogenans. Biochemistry 17 (1978) 4370–4376. [PMID: 718844]
2.  Hübener, H.J. and Sahrholz, F.G. 20β-hydroxy-steroid-dehydrogenase. II. Darstellung und Kristallisation. Biochem. Z. 333 (1960) 95–105. [PMID: 14403761]
3.  Hübener, H.J., Sahrholz, F.G., Schmidt-Thomé, J., Nesemann, G. and Junk, R. 20β-Hydroxy-Steroid-Dehydrogenase, ein neues kristallines Enzym. Biochim. Biophys. Acta 35 (1959) 270–272. [PMID: 14403760]
4.  Lynn, W.S. and Brown, R.H. The conversion of progesterone to androgens by testes. J. Biol. Chem. 232 (1958) 1015–1030. [PMID: 13549484]
5.  Strickler, R.C., Covey, D.F. and Tobias, B. Study of 3α, 20 β-hydroxysteroid dehydrogenase with an enzyme-generated affinity alkylator: dual enzyme activity at a single active site. Biochemistry 19 (1980) 4950–4954. [PMID: 6936053]
6.  Sweet, F. and Samant, B.S. Bifunctional enzyme activity at the same active site: study of 3α and 20β activity by affinity alkylation of 3α, 20β-hydroxysteroid dehydrogenase with 17-(bromoacetoxy)steroids. Biochemistry 19 (1980) 978–986. [PMID: 6928375]
[EC 1.1.1.53 created 1961, modified 1986]
 
 
EC 1.1.1.60     
Accepted name: 2-hydroxy-3-oxopropionate reductase
Reaction: D-glycerate + NAD(P)+ = 2-hydroxy-3-oxopropanoate + NAD(P)H + H+
Other name(s): tartronate semialdehyde reductase; (R)-glycerate:NAD(P)+ oxidoreductase
Systematic name: D-glycerate:NAD(P)+ oxidoreductase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9028-68-6
References:
1.  Gotto, A.M. and Kornberg, H.L. The metabolism of C2 compounds in micro-organisms. 7. Preparation and properties of crystalline tartronic semialdehyde reductase. Biochem. J. 81 (1961) 273–284. [PMID: 13900766]
[EC 1.1.1.60 created 1965]
 
 
EC 1.1.1.62     
Accepted name: 17β-estradiol 17-dehydrogenase
Reaction: 17β-estradiol + NAD(P)+ = estrone + NAD(P)H + H+
Other name(s): 20α-hydroxysteroid dehydrogenase; 17β,20α-hydroxysteroid dehydrogenase; 17β-estradiol dehydrogenase; estradiol dehydrogenase; estrogen 17-oxidoreductase; 17β-HSD; HSD17B7
Systematic name: 17β-estradiol:NAD(P)+ 17-oxidoreductase
Comments: The enzyme oxidizes or reduces the hydroxy/keto group on C17 of estrogens and androgens in mammals and regulates the biological potency of these steroids. The mammalian enzyme is bifunctional and also catalyses EC 1.1.1.270, 3β-hydroxysteroid 3-dehydrogenase [3]. The enzyme also acts on (S)-20-hydroxypregn-4-en-3-one and related compounds, oxidizing the (S)-20-group, but unlike EC 1.1.1.149, 20α-hydroxysteroid dehydrogenase, it is Si-specific with respect to NAD(P)+.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-61-9
References:
1.  Kautsky, M.P. and Hagerman, D.D. 17β-Estradiol dehydrogenase of ovine ovaries. J. Biol. Chem. 245 (1970) 1978–1984. [PMID: 4314937]
2.  Langer, L.J., Alexander, J.A. and Engel, L.L. Human placental estradiol-17β dehydrogenase. II. Kinetics and substrate specificities. J. Biol. Chem. 234 (1959) 2609–2614. [PMID: 14413943]
3.  Marijanovic, Z., Laubner, D., Moller, G., Gege, C., Husen, B., Adamski, J. and Breitling, R. Closing the gap: identification of human 3-ketosteroid reductase, the last unknown enzyme of mammalian cholesterol biosynthesis. Mol. Endocrinol. 17 (2003) 1715–1725. [DOI] [PMID: 12829805]
[EC 1.1.1.62 created 1965, modified 1983, modified 1986, modified 2012]
 
 
EC 1.1.1.79     
Accepted name: glyoxylate reductase (NADP+)
Reaction: glycolate + NADP+ = glyoxylate + NADPH + H+
Other name(s): NADPH-glyoxylate reductase; glyoxylate reductase (NADP)
Systematic name: glycolate:NADP+ oxidoreductase
Comments: Also reduces hydroxypyruvate to glycerate; has some affinity for NAD+.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37250-17-2
References:
1.  Cartwright, L.N. and Hullin, R.P. Purification and properties of two glyoxylate reductases from a species of Pseudomonas. Biochem. J. 101 (1966) 781–791. [PMID: 16742459]
2.  Kleczkowski, L.A., Randall, D.D. and Blevins, D.G. Purification and characterization of a novel NADPH(NADH)-dependent glyoxylate reductase from spinach leaves. Comparison of immunological properties of leaf glyoxylate reductase and hydroxypyruvate reductase. Biochem. J. 239 (1986) 653–659. [PMID: 3548703]
[EC 1.1.1.79 created 1972]
 
 
EC 1.1.1.81     
Accepted name: hydroxypyruvate reductase
Reaction: D-glycerate + NAD(P)+ = hydroxypyruvate + NAD(P)H + H+
Other name(s): β-hydroxypyruvate reductase; NADH:hydroxypyruvate reductase; D-glycerate dehydrogenase
Systematic name: D-glycerate:NADP+ 2-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9059-44-3
References:
1.  Kleczkowski, L.A. and Edwards, G.E. Identification of hydroxypyruvate and glyoxylate reductases in maize leaves. Plant Physiol. 91 (1989) 278–286. [PMID: 16667010]
2.  Kleczkowski, L.A. and Randall, D.D. Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves. Comparison of immunological properties of leaf hydroxypyruvate reductases. Biochem. J. 250 (1988) 145–152. [PMID: 3281657]
3.  Kohn, L.D. and Jakoby, W.B. Tartaric acid metabolism. VII. Crystalline hydroxypyruvate reductase (D-glycerate dehydrogenase). J. Biol. Chem. 243 (1968) 2494–2499. [PMID: 4385077]
[EC 1.1.1.81 created 1972]
 
 
EC 1.1.1.82     
Accepted name: malate dehydrogenase (NADP+)
Reaction: (S)-malate + NADP+ = oxaloacetate + NADPH + H+
Other name(s): NADP-malic enzyme; NADP-malate dehydrogenase; malic dehydrogenase (nicotinamide adenine dinucleotide phosphate); malate NADP dehydrogenase; NADP malate dehydrogenase; NADP-linked malate dehydrogenase; malate dehydrogenase (NADP)
Systematic name: (S)-malate:NADP+ oxidoreductase
Comments: Activated by light.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-19-4
References:
1.  Connelly, J.L., Danner, D.J. and Bowden, J.A. Branched chain α-keto acid metabolism. I. Isolation, purification, and partial characterization of bovine liver α-ketoisocaproic:α-keto-β-methylvaleric acid dehydrogenase. J. Biol. Chem. 243 (1968) 1198–1203. [PMID: 5689906]
2.  Johnson, H.S. NADP-malate dehydrogenase: photoactivation in leaves of plants with Calvin cycle photosynthesis. Biochem. Biophys. Res. Commun. 43 (1971) 703–709. [DOI] [PMID: 4397919]
3.  Johnson, H.S. and Hatch, M.D. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis. Biochem. J. 119 (1970) 273–280. [PMID: 4395182]
[EC 1.1.1.82 created 1972]
 
 
EC 1.1.1.88     
Accepted name: hydroxymethylglutaryl-CoA reductase
Reaction: (R)-mevalonate + CoA + 2 NAD+ = 3-hydroxy-3-methylglutaryl-CoA + 2 NADH + 2 H+
For diagram of mevalonate biosynthesis, click here
Other name(s): β-hydroxy-β-methylglutaryl coenzyme A reductase (ambiguous); β-hydroxy-β-methylglutaryl CoA-reductase (ambiguous); 3-hydroxy-3-methylglutaryl coenzyme A reductase (ambiguous); hydroxymethylglutaryl coenzyme A reductase (ambiguous)
Systematic name: (R)-mevalonate:NAD+ oxidoreductase (CoA-acylating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-24-1
References:
1.  Fimognari, G.M. and Rodwell, V.W. Substrate-competitive inhibition of bacterial mevalonate:nicotinamide-adenine dinucleotide oxidoreductase (acylating CoA). Biochemistry 4 (1965) 2086–2090.
[EC 1.1.1.88 created 1972, modified 2002]
 
 
EC 1.1.1.95     
Accepted name: phosphoglycerate dehydrogenase
Reaction: 3-phospho-D-glycerate + NAD+ = 3-phosphooxypyruvate + NADH + H+
For diagram of serine biosynthesis, click here
Other name(s): PHGDH (gene name); D-3-phosphoglycerate:NAD+ oxidoreductase; α-phosphoglycerate dehydrogenase; 3-phosphoglycerate dehydrogenase; 3-phosphoglyceric acid dehydrogenase; D-3-phosphoglycerate dehydrogenase; glycerate 3-phosphate dehydrogenase; glycerate-1,3-phosphate dehydrogenase; phosphoglycerate oxidoreductase; phosphoglyceric acid dehydrogenase; SerA; 3-phosphoglycerate:NAD+ 2-oxidoreductase; SerA 3PG dehydrogenase; 3PHP reductase
Systematic name: 3-phospho-D-glycerate:NAD+ 2-oxidoreductase
Comments: This enzyme catalyses the first committed and rate-limiting step in the phosphoserine pathway of serine biosynthesis. The reaction occurs predominantly in the direction of reduction. The enzyme from the bacterium Escherichia coli also catalyses the activity of EC 1.1.1.399, 2-oxoglutarate reductase [6].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9075-29-0
References:
1.  Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem. 238 (1963) 3934–3944. [PMID: 14086727]
2.  Walsh, D.A. and Sallach, H.J. Purification and properties of chicken liver D-3-phosphoglycerate dehydrogenase. Biochemistry 4 (1965) 1076–1085. [PMID: 4378782]
3.  Slaughter, J.C. and Davies, D.D. The isolation and characterization of 3-phosphoglycerate dehydrogenase from peas. Biochem. J. 109 (1968) 743–748. [PMID: 4386930]
4.  Sugimoto, E. and Pizer, L.I. The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J. Biol. Chem. 243 (1968) 2081. [PMID: 4384871]
5.  Schuller, D.J., Grant, G.A. and Banaszak, L.J. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2 (1995) 69–76. [PMID: 7719856]
6.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
7.  Achouri, Y., Rider, M.H., Schaftingen, E.V. and Robbi, M. Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem. J. 323 (1997) 365–370. [PMID: 9163325]
8.  Dey, S., Grant, G.A. and Sacchettini, J.C. Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem. 280 (2005) 14892–14899. [DOI] [PMID: 15668249]
[EC 1.1.1.95 created 1972, modified 2006, modified 2016]
 
 
EC 1.1.1.96     
Accepted name: diiodophenylpyruvate reductase
Reaction: 3-(3,5-diiodo-4-hydroxyphenyl)lactate + NAD+ = 3-(3,5-diiodo-4-hydroxyphenyl)pyruvate + NADH + H+
Other name(s): aromatic α-keto acid; KAR; 2-oxo acid reductase
Systematic name: 3-(3,5-diiodo-4-hydroxyphenyl)lactate:NAD+ oxidoreductase
Comments: Substrates contain an aromatic ring with a pyruvate side chain. The most active substrates are halogenated derivatives. Compounds with hydroxy or amino groups in the 3 or 5 position are inactive.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 37250-31-0
References:
1.  Zannoni, V.G. and Weber, W.W. Isolation and properties of aromatic α-keto acid reductase. J. Biol. Chem. 241 (1966) 1340–1344. [PMID: 5935348]
[EC 1.1.1.96 created 1972]
 
 
EC 1.1.1.98     
Accepted name: (R)-2-hydroxy-fatty-acid dehydrogenase
Reaction: (R)-2-hydroxystearate + NAD+ = 2-oxostearate + NADH + H+
Other name(s): D-2-hydroxy fatty acid dehydrogenase; 2-hydroxy fatty acid oxidase
Systematic name: (R)-2-hydroxystearate:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-32-1
References:
1.  Levis, G.M. 2-Hydroxy fatty acid oxidases of rat kidney. Biochem. Biophys. Res. Commun. 38 (1970) 470–477. [DOI] [PMID: 5443694]
[EC 1.1.1.98 created 1972]
 
 
EC 1.1.1.99     
Accepted name: (S)-2-hydroxy-fatty-acid dehydrogenase
Reaction: (S)-2-hydroxystearate + NAD+ = 2-oxostearate + NADH + H+
Other name(s): dehydrogenase, L-2-hydroxy fatty acid; L-2-hydroxy fatty acid dehydrogenase; 2-hydroxy fatty acid oxidase
Systematic name: (S)-2-hydroxystearate:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-33-2
References:
1.  Levis, G.M. 2-Hydroxy fatty acid oxidases of rat kidney. Biochem. Biophys. Res. Commun. 38 (1970) 470–477. [DOI] [PMID: 5443694]
[EC 1.1.1.99 created 1972]
 
 
EC 1.1.1.103     
Accepted name: L-threonine 3-dehydrogenase
Reaction: L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+
Other name(s): L-threonine dehydrogenase; threonine 3-dehydrogenase; threonine dehydrogenase; TDH
Systematic name: L-threonine:NAD+ oxidoreductase
Comments: This enzyme acts in concert with EC 2.3.1.29, glycine C-acetyltransferase, in the degradation of threonine to glycine. This threonine-degradation pathway is common to prokaryotic and eukaryotic cells and the two enzymes involved form a complex [2]. In aqueous solution, the product L-2-amino-3-oxobutanoate can spontaneously decarboxylate to form aminoacetone.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9067-99-6
References:
1.  Green, M.L. and Elliott, W.H. The enzymic formation of aminoacetone from threonine and its further metabolism. Biochem. J. 92 (1964) 537–549. [PMID: 4284408]
2.  Hartshorne, D. and Greenberg, D.M. Studies on liver threonine dehydrogenase. Arch. Biochem. Biophys. 105 (1964) 173–178. [DOI] [PMID: 14165492]
3.  Newman, E.B., Kapoor, V. and Potter, R. Role of L-threonine dehydrogenase in the catabolism of threonine and synthesis of glycine by Escherichia coli. J. Bacteriol. 126 (1976) 1245–1249. [PMID: 7548]
4.  Epperly, B.R. and Dekker, E.E. L-Threonine dehydrogenase from Escherichia coli. Identification of an active site cysteine residue and metal ion studies. J. Biol. Chem. 266 (1991) 6086–6092. [PMID: 2007567]
[EC 1.1.1.103 created 1972]
 
 
EC 1.1.1.105     
Accepted name: all-trans-retinol dehydrogenase (NAD+)
Reaction: all-trans-retinol—[cellular-retinol-binding-protein] + NAD+ = all-trans-retinal—[cellular-retinol-binding-protein] + NADH + H+
For diagram of retinal and derivatives biosynthesis, click here
Other name(s): retinol (vitamin A1) dehydrogenase; MDR; microsomal retinol dehydrogenase; retinol dehydrogenase (misleading); retinal reductase (ambiguous); retinene reductase; epidermal retinol dehydrogenase 2; SDR16C5 (gene name); RDH16 (gene name)
Systematic name: all-trans retinol:NAD+ oxidoreductase
Comments: The enzyme recognizes all-trans-retinol and all-trans-retinal as substrates and exhibits a strong preference for NAD+/NADH as cofactors. Recognizes the substrate both in free form and when bound to cellular-retinol-binding-protein (CRBP1), but has higher affinity for the bound form [2]. No activity with 11-cis-retinol or 11-cis-retinal (cf. EC 1.1.1.315, 11-cis retinol dehydrogenase). Also active with 3α-hydroxysteroids [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9033-53-8
References:
1.  Koen, A.L. and Shaw, C.R. Retinol and alcohol dehydrogenases in retina and liver. Biochim. Biophys. Acta 128 (1966) 48–54. [PMID: 5972368]
2.  Gough, W.H., VanOoteghem, S., Sint, T. and Kedishvili, N.Y. cDNA cloning and characterization of a new human microsomal NAD+-dependent dehydrogenase that oxidizes all-trans-retinol and 3α-hydroxysteroids. J. Biol. Chem. 273 (1998) 19778–19785. [DOI] [PMID: 9677409]
3.  Matsuzaka, Y., Okamoto, K., Tsuji, H., Mabuchi, T., Ozawa, A., Tamiya, G. and Inoko, H. Identification of the hRDH-E2 gene, a novel member of the SDR family, and its increased expression in psoriatic lesion. Biochem. Biophys. Res. Commun. 297 (2002) 1171–1180. [DOI] [PMID: 12372410]
4.  Lee, S.A., Belyaeva, O.V. and Kedishvili, N.Y. Biochemical characterization of human epidermal retinol dehydrogenase 2. Chem. Biol. Interact. 178 (2009) 182–187. [DOI] [PMID: 18926804]
[EC 1.1.1.105 created 1972, modified 2011]
 
 
EC 1.1.1.117     
Accepted name: D-arabinose 1-dehydrogenase [NAD(P)+]
Reaction: D-arabinose + NAD(P)+ = D-arabinono-1,4-lactone + NAD(P)H + H+
For diagram of D-arabinose catabolism, click here
Other name(s): D-arabinose 1-dehydrogenase [NAD(P)]
Systematic name: D-arabinose:NAD(P)+ 1-oxidoreductase
Comments: Also acts on L-galactose, 6-deoxy- and 3,6-dideoxy-L-galactose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-48-9
References:
1.  Cline, A.L. and Hu, A.S.L. The isolation of three sugar dehydrogenases from a psuedomonad. J. Biol. Chem. 240 (1965) 4488–4492. [PMID: 5845847]
2.  Cline, A.L. and Hu, A.S.L. Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4493–4497. [PMID: 5845848]
3.  Cline, A.L. and Hu, A.S.L. Some physical properties of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4498–4502. [PMID: 5845849]
[EC 1.1.1.117 created 1972]
 
 
EC 1.1.1.120     
Accepted name: galactose 1-dehydrogenase (NADP+)
Reaction: D-galactose + NADP+ = D-galactono-1,5-lactone + NADPH + H+
Other name(s): D-galactose dehydrogenase (NADP+); galactose 1-dehydrogenase (NADP)
Systematic name: D-galactose:NADP+ 1-oxidoreductase
Comments: Also acts on L-arabinose, 6-deoxy- and 2-deoxy-D-galactose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-51-4
References:
1.  Cline, A.L. and Hu, A.S.L. The isolation of three sugar dehydrogenases from a psuedomonad. J. Biol. Chem. 240 (1965) 4488–4492. [PMID: 5845847]
2.  Cline, A.L. and Hu, A.S.L. Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4493–4497. [PMID: 5845848]
3.  Cline, A.L. and Hu, A.S.L. Some physical properties of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4498–4502. [PMID: 5845849]
4.  Schiwara, H.W. and Domagk, G.F. Über den Abbau der Desoxyzucker durch Bakterienenzyme. V. Anreicherung und Charakterisierung einer NADP-abhängigen Abequosedehydrogenase aus Pseudomonas putida. Hoppe-Seyler's Z. Physiol. Chem. 349 (1968) 1321–1329. [PMID: 4387016]
[EC 1.1.1.120 created 1972]
 
 
EC 1.1.1.121     
Accepted name: aldose 1-dehydrogenase (NAD+)
Reaction: D-aldose + NAD+ = D-aldonolactone + NADH + H+
Other name(s): aldose dehydrogenase; D-aldohexose dehydrogenase; aldose 1-dehydrogenase
Systematic name: D-aldose:NAD+ 1-oxidoreductase
Comments: Acts on D-glucose, 2-deoxy- and 6-deoxy-D-glucose, D-galactose, 6-deoxy-D-galactose, 2-deoxy-L-arabinose and D-xylose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-61-3
References:
1.  Cline, A.L. and Hu, A.S.L. The isolation of three sugar dehydrogenases from a psuedomonad. J. Biol. Chem. 240 (1965) 4488–4492. [PMID: 5845847]
2.  Cline, A.L. and Hu, A.S.L. Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4493–4497. [PMID: 5845848]
3.  Cline, A.L. and Hu, A.S.L. Some physical properties of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4498–4502. [PMID: 5845849]
[EC 1.1.1.121 created 1972]
 
 
EC 1.1.1.133     
Accepted name: dTDP-4-dehydrorhamnose reductase
Reaction: dTDP-β-L-rhamnose + NADP+ = dTDP-4-dehydro-β-L-rhamnose + NADPH + H+
For diagram of dtdp-6-deoxyhexose biosynthesis, click here and for diagram of 6-deoxyhexose biosynthesis, click here
Glossary: dTDP-4-dehydro-β-L-rhamnose = dTDP-4-dehydro-6-deoxy-β-L-mannose
dTDP-4-β-L-rhamnose = dTDP-6-deoxy-β-L-mannose
Other name(s): dTDP-4-keto-L-rhamnose reductase; dTDP-4-ketorhamnose reductase; TDP-4-keto-rhamnose reductase; thymidine diphospho-4-ketorhamnose reductase; dTDP-6-deoxy-L-mannose:NADP+ 4-oxidoreductase; dTDP-6-deoxy-β-L-mannose:NADP+ 4-oxidoreductase
Systematic name: dTDP-β-L-rhamnose:NADP+ 4-oxidoreductase
Comments: In the reverse direction, reduction on the 4-position of the hexose moiety takes place only while the substrate is bound to another enzyme that catalyses epimerization at C-3 and C-5; the complex has been referred to as dTDP-L-rhamnose synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-64-9
References:
1.  Melo, A. and Glaser, L. The mechanism of 6-deoxyhexose synthesis. II. Conversion of deoxythymidine diphosphate 4-keto-6-deoxy-D-glucose to deoxythymidine diphosphate L-rhamnose. J. Biol. Chem. 243 (1968) 1475–1478. [PMID: 4384782]
[EC 1.1.1.133 created 1972]
 
 
EC 1.1.1.144     
Accepted name: perillyl-alcohol dehydrogenase
Reaction: perillyl alcohol + NAD+ = perillyl aldehyde + NADH + H+
For diagram of (-)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Other name(s): perillyl alcohol dehydrogenase
Systematic name: perillyl-alcohol:NAD+ oxidoreductase
Comments: Oxidizes a number of primary alcohols with the alcohol group allylic to an endocyclic double bond and a 6-membered ring, either aromatic or hydroaromatic.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37250-73-0
References:
1.  Ballal, N.R., Bhattacharyya, P.K. and Rangachari, P.N. Perillyl alcohol dehydrogenase from a soil pseudomonad. Biochem. Biophys. Res. Commun. 23 (1966) 473–478. [DOI] [PMID: 4289759]
[EC 1.1.1.144 created 1972]
 
 
EC 1.1.1.146     
Accepted name: 11β-hydroxysteroid dehydrogenase
Reaction: an 11β-hydroxysteroid + NADP+ = an 11-oxosteroid + NADPH + H+
Other name(s): corticosteroid 11β-dehydrogenase; β-hydroxysteroid dehydrogenase; 11β-hydroxy steroid dehydrogenase; corticosteroid 11-reductase; dehydrogenase, 11β-hydroxy steroid
Systematic name: 11β-hydroxysteroid:NADP+ 11-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9041-46-7
References:
1.  Agarwal, A.K., Monder, C., Eckstein, B. and White, P.C. Cloning and expression of rat cDNA encoding corticosteroid 11β-dehydrogenase. J. Biol. Chem. 264 (1989) 18939–18943. [PMID: 2808402]
2.  Bush, I.E., Hunter, S.A. and Meigs, R.A. Metabolism of 11-oxygenated steroids. Metabolism in vitro by preparations of liver. Biochem. J. 107 (1968) 239–258. [PMID: 4384445]
3.  Lakshmi, V. and Monder, C. Purification and characterization of the corticosteroid 11β-dehydrogenase component of the rat liver 11β-hydroxysteroid dehydrogenase complex. Endocrinology 123 (1988) 2390–2398. [DOI] [PMID: 3139396]
4.  Phillips, D.M., Lakshmi, V. and Monder, C. Corticosteroid 11β-dehydrogenase in rat testis. Endocrinology 125 (1989) 209–216. [DOI] [PMID: 2661206]
[EC 1.1.1.146 created 1972]
 
 
EC 1.1.1.153     
Accepted name: sepiapterin reductase (L-erythro-7,8-dihydrobiopterin forming)
Reaction: (1) L-erythro-7,8-dihydrobiopterin + NADP+ = sepiapterin + NADPH + H+
(2) L-erythro-tetrahydrobiopterin + 2 NADP+ = 6-pyruvoyl-5,6,7,8-tetrahydropterin + 2 NADPH + 2 H+
For diagram of biopterin biosynthesis, click here
Glossary: sepiapterin = 2-amino-6-lactoyl-7,8-dihydropteridin-4(3H)-one
tetrahydrobiopterin = 5,6,7,8-tetrahydrobiopterin = 2-amino-6-(1,2-dihydroxypropyl)-5,6,7,8-tetrahydropteridin-4(3H)-one
Other name(s): SR
Systematic name: L-erythro-7,8-dihydrobiopterin:NADP+ oxidoreductase
Comments: This enzyme catalyses the final step in the de novo synthesis of tetrahydrobiopterin from GTP. The enzyme, which is found in higher animals and some fungi and bacteria, produces the erythro form of tetrahydrobiopterin. cf. EC 1.1.1.325, sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9059-48-7
References:
1.  Katoh, S. Sepiapterin reductase from horse liver: purification and properties of the enzyme. Arch. Biochem. Biophys. 146 (1971) 202–214. [DOI] [PMID: 4401291]
2.  Matsubara, M., Katoh, S., Akino, M. and Kaufman, S. Sepiapterin reductase. Biochim. Biophys. Acta 122 (1966) 202–212. [PMID: 5969298]
3.  Werner, E.R., Schmid, M., Werner-Felmayer, G., Mayer, B. and Wachter, H. Synthesis and characterization of 3H-labelled tetrahydrobiopterin. Biochem. J. 304 (1994) 189–193. [PMID: 7528005]
4.  Kim, Y.A., Chung, H.J., Kim, Y.J., Choi, Y.K., Hwang, Y.K., Lee, S.W. and Park, Y.S. Characterization of recombinant Dictyostelium discoideum sepiapterin reductase expressed in E. coli. Mol. Cells 10 (2000) 405–410. [PMID: 10987137]
[EC 1.1.1.153 created 1972, modified 2012]
 
 
EC 1.1.1.163     
Accepted name: cyclopentanol dehydrogenase
Reaction: cyclopentanol + NAD+ = cyclopentanone + NADH + H+
Systematic name: cyclopentanol:NAD+ oxidoreductase
Comments: 4-Methylcyclohexanol and cyclohexanol can also act as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37364-12-8
References:
1.  Griffin, M. and Trudgill, P.W. The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872. Biochem. J. 129 (1972) 595–603. [PMID: 4349113]
2.  Iwaki, H., Hasegawa, Y., Wang, S., Kayser, M.M. and Lau, P.C. Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-monooxygenase. Appl. Environ. Microbiol. 68 (2002) 5671–5684. [DOI] [PMID: 12406764]
[EC 1.1.1.163 created 1976]
 
 
EC 1.1.1.183     
Accepted name: geraniol dehydrogenase (NADP+)
Reaction: geraniol + NADP+ = geranial + NADPH + H+
For diagram of acyclic monoterpenoid biosynthesis, click here
Systematic name: geraniol:NADP+ oxidoreductase
Comments: Also acts, more slowly on farnesol but not on nerol. The enzyme produces a mixture known as citral, which includes geranial and neral. It is still not known whether neral is produced directly by the enzyme, or by isomerization of geranial.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 56802-96-1
References:
1.  Potty, V.H. and Bruemmer, J.H. Oxidation of geraniol by an enzyme system from orange. Phytochemistry 9 (1970) 1001–1007.
2.  Sekiwa-Iijima, Y., Aizawa, Y. and Kubota, K. Geraniol dehydrogenase activity related to aroma formation in ginger (Zingiber officinale Roscoe). J. Agric. Food Chem. 49 (2001) 5902–5906. [DOI] [PMID: 11743782]
3.  Saito, Y., Ito, S., Koltunow, A.M. and Sakai, H. Crystallization and preliminary X-ray analysis of geraniol dehydrogenase from Backhousia citriodora (lemon myrtle). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 (2011) 665–667. [DOI] [PMID: 21636906]
[EC 1.1.1.183 created 1983]
 
 
EC 1.1.1.184     
Accepted name: carbonyl reductase (NADPH)
Reaction: R-CHOH-R′ + NADP+ = R-CO-R′ + NADPH + H+
Other name(s): aldehyde reductase 1; prostaglandin 9-ketoreductase; xenobiotic ketone reductase; NADPH-dependent carbonyl reductase; ALR3; carbonyl reductase; nonspecific NADPH-dependent carbonyl reductase; carbonyl reductase (NADPH2)
Systematic name: secondary-alcohol:NADP+ oxidoreductase
Comments: Acts on a wide range of carbonyl compounds, including quinones, aromatic aldehydes, ketoaldehydes, daunorubicin and prostaglandins E and F, reducing them to the corresponding alcohol. Si-specific with respect to NADPH [cf. EC 1.1.1.2 alcohol dehydrogenase (NADP+)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 89700-36-7
References:
1.  Ahmed, N.K., Felsted, R.L. and Bachur, N.R. Heterogeneity of anthracycline antibiotic carbonyl reductases in mammalian livers. Biochem. Pharmacol. 27 (1978) 2713–2719. [DOI] [PMID: 31888]
2.  Lin, Y.M. and Jarabak, J. Isolation of two proteins with 9-ketoprostaglandin reductase and NADP-linked 15-hydroxyprostaglandin dehydrogenase activities and studies on their inhibition. Biochem. Biophys. Res. Commun. 81 (1978) 1227–1234. [DOI] [PMID: 666816]
3.  Wermuth, B. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J. Biol. Chem. 256 (1981) 1206–1213. [PMID: 7005231]
[EC 1.1.1.184 created 1983]
 
 
EC 1.1.1.185     
Accepted name: L-glycol dehydrogenase
Reaction: an L-glycol + NAD(P)+ = a 2-hydroxycarbonyl compound + NAD(P)H + H+
Other name(s): glycol (nicotinamide adenine dinucleotide (phosphate)) dehydrogenase; L-(+)-glycol:NAD(P) oxidoreductase; L-glycol:NAD(P) dehydrogenase
Systematic name: L-glycol:NAD(P)+ oxidoreductase
Comments: The 2-hydroxycarbonyl compound formed can be further oxidized to a vicinal dicarbonyl compound. In the reverse direction, vicinal diketones, glyceraldehyde, glyoxal, methylglyoxal, 2-oxo-hydroxyketones and 2-ketoacid esters can be reduced.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77967-75-0
References:
1.  Bernardo, A., Burgos, J. and Martin, R. Purification and some properties of L-glycol dehydrogenase from hen's muscle. Biochim. Biophys. Acta 659 (1981) 189–198. [DOI] [PMID: 7018582]
[EC 1.1.1.185 created 1984]
 
 
EC 1.1.1.186     
Accepted name: dTDP-galactose 6-dehydrogenase
Reaction: dTDP-D-galactose + 2 NADP+ + H2O = dTDP-D-galacturonate + 2 NADPH + 2 H+
Other name(s): thymidine-diphosphate-galactose dehydrogenase
Systematic name: dTDP-D-galactose:NADP+ 6-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Katan, R. and Avigad, G. NADP dependent oxidation of TDP-glucose by an enzyme system from sugar beets. Biochem. Biophys. Res. Commun. 24 (1966) 18–24. [DOI] [PMID: 4381717]
[EC 1.1.1.186 created 1984, modified 2002]
 
 
EC 1.1.1.188     
Accepted name: prostaglandin-F synthase
Reaction: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate + NADP+ = (5Z,13E)-(15S)-9α,15-dihydroxy-11-oxoprosta-5,13-dienoate + NADPH + H+
Other name(s): prostaglandin-D2 11-reductase; reductase, 15-hydroxy-11-oxoprostaglandin; PGD2 11-ketoreductase; PGF synthetase; prostaglandin 11-ketoreductase; prostaglandin D2-ketoreductase; prostaglandin F synthase; prostaglandin F synthetase; synthetase, prostaglandin F; PGF synthetase; NADPH-dependent prostaglandin D2 11-keto reductase; prostaglandin 11-keto reductase
Systematic name: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate:NADP+ 11-oxidoreductase
Comments: Reduces prostaglandin D2 and prostaglandin H2 to prostaglandin F2; prostaglandin D2 is not an intermediate in the reduction of prostaglandin H2. Also catalyses the reduction of a number of carbonyl compounds, such as 9,10-phenanthroquinone and 4-nitroacetophenone.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55976-95-9
References:
1.  Reingold, D.F., Kawasaki, A. and Needleman, P. A novel prostaglandin 11-keto reductase found in rabbit liver. Biochim. Biophys. Acta 659 (1981) 179–188. [DOI] [PMID: 7248318]
2.  Watanabe, K., Shimizu, T. and Hayaishi, O. Enzymatic conversion of prostaglandin-D2 to prostaglandin-F in the rat lung. Biochem. Int. 2 (1981) 603–610.
3.  Watanabe, K., Yoshida, R., Shimizu, T. and Hayaishi, O. Enzymatic formation of prostaglandin F from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung. J. Biol. Chem. 260 (1985) 7035–7041. [PMID: 3858278]
4.  Wong, P.Y.-K. Purification and partial characterization of prostaglandin D2 11-keto reductase in rabbit liver. Biochim. Biophys. Acta 659 (1981) 169–178. [DOI] [PMID: 7248317]
5.  Wong, P.Y.-K. Purification of PGD2 11-ketoreductase from rabbit liver. Methods Enzymol. 86 (1982) 117–125. [PMID: 7132748]
[EC 1.1.1.188 created 1984, modified 1989, modified 1990]
 
 
EC 1.1.1.189     
Accepted name: prostaglandin-E2 9-reductase
Reaction: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate + NADP+ = (5Z,13E)-(15S)-11α,15-dihydroxy-9-oxoprosta-5,13-dienoate + NADPH + H+
Other name(s): PGE2-9-OR; reductase, 15-hydroxy-9-oxoprostaglandin; 9-keto-prostaglandin E2 reductase; 9-ketoprostaglandin reductase; PGE-9-ketoreductase; PGE2 9-oxoreductase; PGE2-9-ketoreductase; prostaglandin 9-ketoreductase; prostaglandin E 9-ketoreductase; prostaglandin E2-9-oxoreductase
Systematic name: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate:NADP+ 9-oxidoreductase
Comments: Reduces prostaglandin E2 to prostaglandin F2α. A number of other 9-oxo- and 15-oxo-prostaglandin derivatives can also be reduced to the corresponding hydroxy compounds. May be identical with EC 1.1.1.197 15-hydroxyprostaglandin dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 42613-35-4
References:
1.  Lee, S.-C. and Levine, L. Purification and regulatory properties of chicken heart prostaglandin E 9-ketoreductase. J. Biol. Chem. 250 (1975) 4549–4555. [PMID: 166995]
2.  Schlegel, W., Krüger, S. and Korte, K. Purification of prostaglandin E2 9-oxoreductase from human decidua vera. FEBS Lett. 171 (1984) 141–144. [DOI] [PMID: 6586494]
3.  Tai, H.-H. and Yuan, B. Purification and assay of 9-hydroxyprostaglandin dehydrogenase from rat kidney. Methods Enzymol. 86 (1982) 113–117. [PMID: 7132747]
4.  Watkins, J.D. and Jarabak, J. The effect of NaCl intake on 9-ketoprostaglandin reductase activity in the rabbit kidney. Prostaglandins 30 (1985) 335–349. [DOI] [PMID: 3901124]
[EC 1.1.1.189 created 1984, modified 1989]
 
 
EC 1.1.1.206     
Accepted name: tropinone reductase I
Reaction: tropine + NADP+ = tropinone + NADPH + H+
For diagram of reaction, click here
Glossary: tropine = 3α-hydroxytropane = tropan-3-endo-ol
Other name(s): tropine dehydrogenase; tropinone reductase (ambiguous); TR-I
Systematic name: tropine:NADP+ 3α-oxidoreductase
Comments: Also oxidizes other tropan-3α-ols, but not the corresponding β-derivatives [1]. This enzyme along with EC 1.1.1.236, tropinone reductase II, represents a branch point in tropane alkaloid metabolism [4]. Tropine (the product of EC 1.1.1.206) is incorporated into hyoscyamine and scopolamine whereas pseudotropine (the product of EC 1.1.1.236) is the first specific metabolite on the pathway to the calystegines [4]. Both enzymes are always found together in any given tropane-alkaloid-producing species, have a common substrate, tropinone, and are strictly stereospecific [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 118390-87-7
References:
1.  Koelen, K.J. and Gross, G.G. Partial purification and properties of tropine dehydrogenase from root cultures of Datura stramonium. Planta Med. 44 (1982) 227–230. [PMID: 17402126]
2.  Couladis, M.M, Friesen, J.B., Landgrebe, M.E. and Leete, E. Enzymes catalysing the reduction of tropinone to tropine and ψ-tropine isolated from the roots of Datura innoxia. Pytochemistry 30 (1991) 801–805.
3.  Nakajima, K., Hashimoto, T. and Yamada, Y. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Proc. Natl. Acad. Sci. USA 90 (1993) 9591–9595. [DOI] [PMID: 8415746]
4.  Dräger, B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67 (2006) 327–337. [DOI] [PMID: 16426652]
[EC 1.1.1.206 created 1984, modified 2007]
 
 
EC 1.1.1.209     
Accepted name: 3(or 17)α-hydroxysteroid dehydrogenase
Reaction: androsterone + NAD(P)+ = 5α-androstane-3,17-dione + NAD(P)H + H+
Other name(s): 3(17)α-hydroxysteroid dehydrogenase
Systematic name: 3(or 17)α-hydroxysteroid:NAD(P)+ oxidoreductase
Comments: Acts on the 3α-hydroxy group of androgens of the 5α-androstane series; and also, more slowly, on the 17α-hydroxy group of both androgenic and estrogenic substrates (cf. EC 1.1.1.51 3(or 17)β-hydroxysteroid dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 83294-77-3
References:
1.  Lau, P.C.K., Layne, D.S. and Williamson, D.G. A 3(17)α-hydroxysteroid dehydrogenase of female rabbit kidney cytosol. Purification and characterization of multiple forms of the enzyme. J. Biol. Chem. 257 (1982) 9444–9449. [PMID: 6955302]
2.  Lau, P.C.K., Layne, D.S. and Williamson, D.G. Comparison of the multiple forms of the soluble 3(17)α-hydroxysteroid dehydrogenases of female rabbit kidney and liver. J. Biol. Chem. 257 (1982) 9450–9456. [PMID: 6955303]
[EC 1.1.1.209 created 1986]
 
 
EC 1.1.1.212     
Accepted name: 3-oxoacyl-[acyl-carrier-protein] reductase (NADH)
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + NAD+ = a 3-oxoacyl-[acyl-carrier protein] + NADH + H+
Other name(s): 3-oxoacyl-[acyl carrier protein] (reduced nicotinamide adenine dinucleotide) reductase; 3-oxoacyl-[acyl-carrier-protein] reductase (NADH); (3R)-3-hydroxyacyl-[acyl-carrier-protein]:NAD+ oxidoreductase
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein]:NAD+ oxidoreductase
Comments: Forms part of the fatty acid synthase system in plants. Can be separated from EC 1.1.1.100, 3-oxoacyl-[acyl-carrier-protein] reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82047-86-7
References:
1.  Caughey, I. and Kekwick, R.G.O. The characteristics of some components of the fatty acid synthetase system in the plastids from the mesocarp of avocado (Persea americana) fruit. Eur. J. Biochem. 123 (1982) 553–561. [DOI] [PMID: 7075600]
[EC 1.1.1.212 created 1986]
 
 
EC 1.1.1.219     
Accepted name: dihydroflavonol 4-reductase
Reaction: a (2R,3S,4S)-leucoanthocyanidin + NADP+ = a (2R,3R)-dihydroflavonol + NADPH + H+
For diagram of flavonoid biosynthesis, click here
Other name(s): dihydrokaempferol 4-reductase; dihydromyricetin reductase; NADPH-dihydromyricetin reductase; dihydroquercetin reductase; DFR (gene name); cis-3,4-leucopelargonidin:NADP+ 4-oxidoreductase; dihydroflavanol 4-reductase (incorrect)
Systematic name: (2R,3S,4S)-leucoanthocyanidin:NADP+ 4-oxidoreductase
Comments: This plant enzyme, involved in the biosynthesis of anthocyanidins, is known to act on (+)-dihydrokaempferol, (+)-taxifolin, and (+)-dihydromyricetin, although some enzymes may act only on a subset of these compounds. Each dihydroflavonol is reduced to the corresponding cis-flavan-3,4-diol. NAD+ can act instead of NADP+, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83682-99-9
References:
1.  Heller, W., Forkmann, G., Britsch, L. and Grisebach, H. Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis- diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis. Planta 165 (1985) 284–287. [PMID: 24241054]
2.  Stafford, H.A. and Lester, H.H. Flavan-3-ol biosynthesis the conversion of (+)-dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (+)-gallocatechin by reductases extracted from tissue-cultures of Ginkgo biloba and Pseudotsuga-menziesii. Plant Physiol. 78 (1985) 791–794. [PMID: 16664326]
3.  Fischer, D., Stich, K., Britsch, L. and Grisebach, H. Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers of Dahlia variabilis. Arch. Biochem. Biophys. 264 (1988) 40–47. [DOI] [PMID: 3293532]
4.  Li, H., Qiu, J., Chen, F., Lv, X., Fu, C., Zhao, D., Hua, X. and Zhao, Q. Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene in Saussurea medusa. Mol. Biol. Rep. 39 (2012) 2991–2999. [DOI] [PMID: 21701830]
[EC 1.1.1.219 created 1989, modified 2016]
 
 
EC 1.1.1.220     
Accepted name: 6-pyruvoyltetrahydropterin 2′-reductase
Reaction: 6-lactoyl-5,6,7,8-tetrahydropterin + NADP+ = 6-pyruvoyltetrahydropterin + NADPH + H+
For diagram of 6-pyruvyltetrahydropterin metabolism, click here
Other name(s): 6-pyruvoyltetrahydropterin reductase; 6PPH4(2′-oxo) reductase; 6-pyruvoyl tetrahydropterin (2′-oxo)reductase; 6-pyruvoyl-tetrahydropterin 2′-reductase; pyruvoyl-tetrahydropterin reductase
Systematic name: 6-lactoyl-5,6,7,8-tetrahydropterin:NADP+ 2′-oxidoreductase
Comments: Not identical with EC 1.1.1.153 sepiapterin reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 97089-79-7
References:
1.  Milstien, S. and Kaufman, S. Biosynthesis of tetrahydrobiopterin: conversion of dihydroneopterin triphosphate to tetrahydropterin intermediates. Biochem. Biophys. Res. Commun. 128 (1985) 1099–1107. [DOI] [PMID: 4004850]
[EC 1.1.1.220 created 1989]
 
 
EC 1.1.1.232     
Accepted name: 15-hydroxyicosatetraenoate dehydrogenase
Reaction: (15S)-15-hydroxy-5,8,11-cis-13-trans-icosatetraenoate + NAD(P)+ = 15-oxo-5,8,11-cis-13-trans-icosatetraenoate + NAD(P)H + H+
Other name(s): 15-hydroxyeicosatetraenoate dehydrogenase
Systematic name: (15S)-15-hydroxy-5,8,11-cis-13-trans-icosatetraenoate:NAD(P)+ 15-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 117910-46-0
References:
1.  Sok, D.-E., Kang, J.B. and Shin, H.D. 15-Hydroxyeicosatetraenoic acid dehydrogenase activity in microsomal fraction of mouse liver homogenate. Biochem. Biophys. Res. Commun. 156 (1988) 524–529. [DOI] [PMID: 3052453]
[EC 1.1.1.232 created 1992]
 
 
EC 1.1.1.236     
Accepted name: tropinone reductase II
Reaction: pseudotropine + NADP+ = tropinone + NADPH + H+
For diagram of reaction, click here
Glossary: pseudotropine = ψ-tropine = 3β-hydroxytropane = tropan-3-exo-ol
Other name(s): tropinone (ψ-tropine-forming) reductase; pseudotropine forming tropinone reductase; tropinone reductase (ambiguous); TR-II
Systematic name: pseudotropine:NADP+ 3-oxidoreductase
Comments: This enzyme along with EC 1.1.1.206, tropine dehydrogenase, represents a branch point in tropane alkaloid metabolism [3]. Tropine (the product of EC 1.1.1.206) is incorporated into hyoscyamine and scopolamine whereas pseudotropine (the product of EC 1.1.1.236) is the first specific metabolite on the pathway to the calystegines [3]. Both enzymes are always found together in any given tropane-alkaloid-producing species, have a common substrate, tropinone, and are strictly stereospecific [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 136111-61-0
References:
1.  Dräger, B., Hashimoto, T. and Yamada, Y. Purification and characterization of pseudotropine forming tropinone reductase from Hyoscyamus niger root cultures. Agric. Biol. Chem. 52 (1988) 2663–2667.
2.  Couladis, M.M, Friesen, J.B., Landgrebe, M.E. and Leete, E. Enzymes catalysing the reduction of tropinone to tropine and ψ-tropine isolated from the roots of Datura innoxia. Pytochemistry 30 (1991) 801–805.
3.  Nakajima, K., Hashimoto, T. and Yamada, Y. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Proc. Natl. Acad. Sci. USA 90 (1993) 9591–9595. [DOI] [PMID: 8415746]
4.  Dräger, B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67 (2006) 327–337. [DOI] [PMID: 16426652]
[EC 1.1.1.236 created 1992, modified 2007]
 
 
EC 1.1.1.237     
Accepted name: hydroxyphenylpyruvate reductase
Reaction: (1) (R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ = 3-(4-hydroxyphenyl)pyruvate + NAD(P)H + H+
(2) (R)-3-(3,4-dihydroxyphenyl)lactate + NAD(P)+ = 3-(3,4-dihydroxyphenyl)pyruvate + NAD(P)H + H+
For diagram of 4-hydroxyphenylpyruvate metabolites, click here and for diagram of rosmarinate biosynthesis, click here
Other name(s): HPPR
Systematic name: (R)-3-(4-hydroxyphenyl)lactate:NAD(P)+ oxidoreductase
Comments: The enzyme participates in the biosynthesis of rosmarinic acid. It belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases, and prefers NADPH to NADH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 117590-77-9
References:
1.  Petersen, M. and Alfermann, A.W. Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z. Naturforsch. C: Biosci. 43 (1988) 501–504.
2.  Kim, K.H., Janiak, V. and Petersen, M. Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol. Biol. 54 (2004) 311–323. [PMID: 15284489]
3.  Kim, Y.B., Uddina, M.R., Kim, Y., Park, C.G. and Park, S.U. Molecular cloning and characterization of tyrosine aminotransferase and hydroxyphenylpyruvate reductase, and rosmarinic acid accumulation in Scutellaria baicalensis. Nat. Prod. Commun. 9 (2014) 1311–1314. [PMID: 25918800]
4.  Wang, G.Q., Chen, J.F., Yi, B., Tan, H.X., Zhang, L. and Chen, W.S. HPPR encodes the hydroxyphenylpyruvate reductase required for the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza. Chin J Nat Med 15 (2017) 917–927. [PMID: 29329649]
[EC 1.1.1.237 created 1992, modified 2018]
 
 
EC 1.1.1.250     
Accepted name: D-arabinitol 2-dehydrogenase
Reaction: D-arabinitol + NAD+ = D-ribulose + NADH + H+
Other name(s): D-arabinitol 2-dehydrogenase (ribulose-forming)
Systematic name: D-arabinitol:NAD+ 2-oxidoreductase (D-ribulose-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 336883-93-3
References:
1.  Wong, B., Murray, J.S., Castellanos, M. and Croen, K.D. D-Arabitol metabolism in Candida albicans: studies of the biosynthetic pathway and the gene that encodes NAD-dependent D-arabitol dehydrogenase. J. Bacteriol. 175 (1993) 6314–6320. [DOI] [PMID: 8407803]
2.  Quong, M.W., Miyada, C.G., Switchenko, A.C. and Goodman, T.C. Identification, purification, and characterization of a D-arabinitol-specific dehydrogenase from Candida tropicalis. Biochem. Biophys. Res. Commun. 196 (1993) 1323–1329. [DOI] [PMID: 8250887]
[EC 1.1.1.250 created 1999]
 
 
EC 1.1.1.252     
Accepted name: tetrahydroxynaphthalene reductase
Reaction: scytalone + NADP+ = 1,3,6,8-tetrahydroxynaphthalene + NADPH + H+
Systematic name: scytalone:NADP+ Δ5-oxidoreductase
Comments: Reduces 1,3,6,8-tetrahydroxynaphthalene to scytalone and also reduces 1,3,8-trihydroxynaphthalene to vermelone. Involved with EC 4.2.1.94 scytalone dehydratase in the biosynthesis of melanin in pathogenic fungi.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 141350-13-2
References:
1.  Wheeler, M.H. and Greenblatt, G.A. The inhibition of melanin biosynthetic reactions in Pyricularia oryzae by compounds that prevent rice blast disease. Exp. Mycol. 12 (1988) 151–160.
2.  Vidal-Cros, A., Viviani, F., Labesse, G., Boccara, M. and Gaudry, M. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloning and sequencing. Eur. J. Biochem. 219 (1994) 985–992. [DOI] [PMID: 8112349]
3.  Thompson, J.E., Basarab, G.S., Andersson, A., Lindqvist, Y. and Jordan, D.B. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism. Biochemistry 36 (1997) 1852–1860. [DOI] [PMID: 9048570]
[EC 1.1.1.252 created 1992 as EC 1.3.1.50, transferred 1999 to EC 1.1.1.252]
 
 
EC 1.1.1.257     
Accepted name: 4-(hydroxymethyl)benzenesulfonate dehydrogenase
Reaction: 4-(hydroxymethyl)benzenesulfonate + NAD+ = 4-formylbenzenesulfonate + NADH + H+
Systematic name: 4-(hydroxymethyl)benzenesulfonate:NAD+ oxidoreductase
Comments: Involved in the toluene-4-sulfonate degradation pathway in Comamonas testosteroni.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 167973-64-0
References:
1.  Junker, F., Saller, E., Schläfli Oppenberg, H.R., Kroneck, P.M., Leisinger, T. and Cook, A.M. Degradative pathways for p-toluenecarboxylate and p-toluenesulfonate and their multicomponent oxygenases in Comamonas testosteroni strains PSB-4 and T-2. Microbiology 142 (1996) 2419–2427. [DOI] [PMID: 8828208]
[EC 1.1.1.257 created 2000]
 
 
EC 1.1.1.261     
Accepted name: sn-glycerol-1-phosphate dehydrogenase
Reaction: sn-glycerol 1-phosphate + NAD(P)+ = glycerone phosphate + NAD(P)H + H+
For diagram of archaetidylserine biosynthesis, click here and for diagram of archaetidylserine biosynthesis, click here
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): glycerol-1-phosphate dehydrogenase [NAD(P)+]; sn-glycerol-1-phosphate:NAD+ oxidoreductase; G-1-P dehydrogenase; Gro1PDH; AraM
Systematic name: sn-glycerol-1-phosphate:NAD(P)+ 2-oxidoreductase
Comments: This enzyme is found primarily as a Zn2+-dependent form in archaea but a Ni2+-dependent form has been found in Gram-positive bacteria [6]. The Zn2+-dependent metalloenzyme is responsible for the formation of archaea-specific sn-glycerol-1-phosphate, the first step in the biosynthesis of polar lipids in archaea. It is the enantiomer of sn-glycerol 3-phosphate, the form of glycerophosphate found in bacteria and eukaryotes. The other enzymes involved in the biosynthesis of polar lipids in archaea are EC 2.5.1.41 (phosphoglycerol geranylgeranyltransferase) and EC 2.5.1.42 (geranylgeranylglycerol-phosphate geranylgeranyltransferase), which together alkylate the hydroxy groups of glycerol 1-phosphate to give unsaturated archaetidic acid, which is acted upon by EC 2.7.7.67 (CDP-archaeol synthase) to form CDP-unsaturated archaeol. The final step in the pathway involves the addition of L-serine, with concomitant removal of CMP, leading to the production of unsaturated archaetidylserine [4]. Activity of the enzyme is stimulated by K+ [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 204594-18-3
References:
1.  Nishihara, M. and Koga, Y. sn-Glycerol-1-phosphate dehydrogenase in Methanobacterium thermoautotrophicum: key enzyme in biosynthesis of the enantiomeric glycerophosphate backbone of ether phospholipids of archaebacteria. J. Biochem. 117 (1995) 933–935. [PMID: 8586635]
2.  Nishihara, M. and Koga, Y. Purification and properties of sn-glycerol-1-phosphate dehydrogenase from Methanobacterium thermoautotrophicum: characterization of the biosynthetic enzyme for the enantiomeric glycerophosphate backbone of ether polar lipids of Archaea. J. Biochem. 122 (1997) 572–576. [PMID: 9348086]
3.  Koga, Y., Kyuragi, T., Nishihara, M. and Sone, N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 46 (1998) 54–63. [PMID: 9419225]
4.  Morii, H., Nishihara, M. and Koga, Y. CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus. J. Biol. Chem. 275 (2000) 36568–36574. [DOI] [PMID: 10960477]
5.  Han, J.S. and Ishikawa, K. Active site of Zn2+-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1. Archaea 1 (2005) 311–317. [PMID: 15876564]
6.  Guldan, H., Sterner, R. and Babinger, P. Identification and characterization of a bacterial glycerol-1-phosphate dehydrogenase: Ni(2+)-dependent AraM from Bacillus subtilis. Biochemistry 47 (2008) 7376–7384. [DOI] [PMID: 18558723]
[EC 1.1.1.261 created 2000, modified 2009]
 
 
EC 1.1.1.266     
Accepted name: dTDP-4-dehydro-6-deoxyglucose reductase
Reaction: dTDP-α-D-fucopyranose + NAD(P)+ = dTDP-4-dehydro-6-deoxy-α-D-glucose + NAD(P)H + H+
For diagram of dTDP-6-deoxyhexose biosynthesis, click here
Glossary: dTDP-4-dehydro-6-deoxy-α-D-glucose = dTDP-6-deoxy-α-D-xylo-hexopyranos-4-ulose = thymidine 5′-[3-(6-deoxy--D-xylo-hexopyranosyl-4-ulose) diphosphate]
Other name(s): dTDP-4-keto-6-deoxyglucose reductase; dTDP-D-fucose:NADP+ oxidoreductase; Fcf1; dTDP-6-deoxy-D-xylo-hex-4-ulopyranose reductase
Systematic name: dTDP-α-D-fucopyranose:NAD(P)+ oxidoreductase
Comments: The enzymes from the Gram-negative bacteria Aggregatibacter actinomycetemcomitans and Escherichia coli O52 are involved in activation of fucose for incorporation into capsular polysaccharide O-antigens [1,3]. The enzyme from the Gram-positive bacterium Anoxybacillus tepidamans (Geobacillus tepidamans) is involved in activation of fucose for incorporation into the organism’s S-layer [2]. The enzyme from Escherichia coli O52 has a higher catalytic efficiency with NADH than with NADPH [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yoshida, Y., Nakano, Y., Nezu, T., Yamashita, Y. and Koga, T. A novel NDP-6-deoxyhexosyl-4-ulose reductase in the pathway for the synthesis of thymidine diphosphate-D-fucose. J. Biol. Chem. 274 (1999) 16933–16939. [DOI] [PMID: 10358040]
2.  Zayni, S., Steiner, K., Pfostl, A., Hofinger, A., Kosma, P., Schaffer, C. and Messner, P. The dTDP-4-dehydro-6-deoxyglucose reductase encoding fcd gene is part of the surface layer glycoprotein glycosylation gene cluster of Geobacillus tepidamans GS5-97T. Glycobiology 17 (2007) 433–443. [DOI] [PMID: 17202151]
3.  Wang, Q., Ding, P., Perepelov, A.V., Xu, Y., Wang, Y., Knirel, Y.A., Wang, L. and Feng, L. Characterization of the dTDP-D-fucofuranose biosynthetic pathway in Escherichia coli O52. Mol. Microbiol. 70 (2008) 1358–1367. [DOI] [PMID: 19019146]
[EC 1.1.1.266 created 2001, modified 2013]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald